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Abstract 

In the paper, we examine the forecasting abilities of Bayesian vector error correction models (allowing for long-

term relationships between modelled variables) featuring Markovian breaks in the conditional covariance matrix 

so as to capture time-varying volatility typically recognized in macroeconomic data. Such models may prove 

a useful tool in prediction of macroeconomic time series as a valid, empirically ‘sufficient’ alternative for VEC 

structures with more sophisticated specifications of heteroscedasticity, such as GARCH or stochastic volatility 

processes. The predictive performance of the models in question is evaluated here within the probabilistic 

paradigm of forecasting, with the accuracy of density forecasts measured by means of the log predictive score and 

Bayes factors, while also using Probability Integral Transform (PIT) to assess their calibration. Two empirical 

studies conducted in this research for the Polish and US economies, in the context of small models of monetary 

policy, indicate some gains in the predictive power of VEC models with Markov-switching heteroscedasticity as 

compared with homoscedastic VEC systems, though more sophisticated specifications (like GARCH or stochastic 

volatility) may still be required for further improvement. 
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1. Introduction 

For an effective forecasting of any time series by means of some statistical model it is essential 

for the latter to capture key characteristics of the data at hand. Macroeconomic time series, 

which are of this paper’s main focus, typically display two features (potentially, along with 

some seasonal or cyclical patterns): non-stationarity (due to the presence of stochastic trends) 

and conditional heteroscedasticity, with the latter having already been commonly associated 

not only with financial and commodity markets. Dealing with non-stationary processes jointly 

for different variables usually requires the use of cointegration analysis, with the underlying 

vector autoregression (VAR) model in its vector error correction (VEC) form. Then, to account 

also for the other feature some time-variability needs to be introduced into the conditional 

covariance matrix of the observations, with typical choices including a variety of multivariate 
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GARCH (MGARCH) or stochastic volatility (MSV) processes, both classes enabling 

continuously-valued (rather than discrete) changes of conditional variances and/or correlations. 

Recently, Wróblewska and Pajor (2019) examined the predictive performance of VEC models 

equipped with hybrid structures combining Multiplicative Stochastic Factor (MSF) process 

(belonging to the MSV class) and Scalar BEKK (SBEKK) specification (of the MGARCH 

family). As evidenced in the cited work (focusing on macroeconomic data for the Polish 

economy), extending a ‘standard’, homoscedastic VEC model with the MSF or MSF-SBEKK 

conditional volatility structure (introduced by Osiewalski, 2009, Osiewalski and Pajor, 2009) 

dramatically improves the forecasting abilities of the model (as measured by the log predictive 

score, LPS, energy score, ES, and also mean squared forecast error, MSFE). 

In this paper, we shift the attention to a qualitatively different and simpler (as compared 

with MGARCH, MSV or their hybrids) approach to modelling conditional heteroscedasticity 

in cointegrated VAR/VEC systems. We conjecture that in the case of macroeconomic 

(as opposed to financial) time series it may be empirically ‘sufficient’ (for the purpose of 

prediction) to enable discrete rather than continuously-valued shifts in the multivariate 

volatility. Following this line of reasoning, we allow the conditional covariance matrix to 

switch between two regimes, say, of high and low volatility, according to a homogenous and 

ergodic Markov chain. 

Although the concept of Markov-switching (MS) time series models has been well-

established and present in the literature for a long time (since a seminal paper by Hamilton 

1989), papers devoted to forecast evaluation of MS-VEC models for macroeconomic data are 

not as much scarce as their focus limited to the point (rather than density) prediction almost 

exclusively (see, e.g. Clarida et al., 2003, Sarno et al., 2005, and Psaradakis and Spagnolo, 

2005; in the latter the authors, apart from the point forecasts, also evaluate the calibration of 

density forecasts via the Probability Integral Transform, PIT). Therefore, following the recent 

shift of the forecasting paradigm from the point to probabilistic prediction, the aim of this study 

is an empirical evaluation of predictive densities performance of VEC models with Markov-

switching heteroscedasticity (VEC-MSH) in comparison with homoscedastic VEC structures. 

As for the statistical inference framework, we resort to the Bayesian approach to estimation 

and prediction, similarly as Wróblewska and Pajor (2019). Admittedly, the Bayesian setting is 

the most suitable while dealing with models with latent processes (like stochastic volatility or 

hidden Markov chains). Moreover, it handles coherently the parameter estimation uncertainty 

while producing predictive densities, which in the case of regime-changing models may be 

essential for the sake of their forecasting performance (as conjectured by Psaradakis and 
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Spagnolo, 2005). The latter is evaluated here by means of the log predictive score (LPS), which 

underlies the so-called predictive Bayes factor. We also examine PIT histograms to assess 

forecasts’ densities calibration; see, e.g., Geweke and Amisano (2010), Gneiting and Raftery 

(2007), Gneiting et al. (2007). 

 

2. VEC models with Markov-switching heteroscedasticity 

An 𝑛-variate VAR(k) model with Markov-switching conditional covariance matrix can be 

written in its VEC (henceforth VEC-MSH) form as: 

Δ𝑥𝑡 = Π̃𝑥𝑡−1 +∑Γ𝑖Δ𝑥𝑡−𝑖

𝑘−1

𝑖=1

+Φ𝐷𝑡 + 𝜀𝑡, 𝑡 = 1, 2, … , 𝑇,  (1) 

𝜀𝑡|𝜓𝑡−1, 𝑆𝑡, 𝜃~𝑁(0, Σ𝑡), (2) 

where 𝑥𝑡 is an 𝑛-variate random vector, {𝜀𝑡} is a vector white noise with some unconditional 

covariance matrix Σ, matrix 𝐷𝑡 comprises deterministic variables (such as the constant, trend 

and seasonal dummies), Π̃, Γ𝑖 and Φ are real-valued matrices of parameters, all collected in 𝜃, 

and 𝜓𝑡−1 denotes the past of the process {𝑥𝑡} up to time 𝑡 − 1. The matrix Π̃ decomposes as 

Π̃ = 𝛼𝛽′, with 𝛼 (𝑛 × 𝑟) storing the adjustment coefficients and 𝛽 (𝑚× 𝑟, 𝑚 ≥ 𝑛) pertaining 

to the cointegration relationships, once they exist (then 𝑟 < 𝑛 is their number). Note that 𝑚 >

𝑛 only under the deterministic components restricted to the cointegration relationships. The 

initial conditions 𝑥−𝑘+1, 𝑥−𝑘+2, …, 𝑥0 are assumed to be known and set as pre-sample 

observations; see Wróblewska and Pajor (2019) and the references therein. Finally, {𝑆𝑡}, where 

𝑆𝑡 ∈ {1, 2}, forms a two-state homogenous and ergodic Markov chain with the (time-invariant) 

transition probabilities 𝑝𝑖𝑗 ≡ Pr(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖, 𝜃), (𝑖 = 1, 2), with 𝑝11 and 𝑝22 also stored in 

𝜃. This latent process governs the switches between the two regimes, each featured by ‘its own’ 

conditional (given 𝜓𝑡−1 and 𝜃) covariance matrix Σ𝑡 ≡ Σ𝑆𝑡 of the error term 𝜀𝑡. Note that in our 

setting we restrict the regime changes only to the volatility, thereby restricting the other 

parameters of the VEC structure to be time-invariant, assuming that possible long-term 

relationships and short-term adjustments hold constant over the entire sample. 
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3. Bayesian model specification, estimation and prediction 

The methodology of Bayesian Markov-switching VEC models has been developed by 

Jochmann and Koop (2015) and we follow their approach to a large extent, with minor 

modifications so as to tailor our framework to the one presented in Wróblewska and Pajor 

(2019).2 As Bayesian modelling requires specification of the prior distributions for model 

parameters, we adopt their structure for the VEC part from the cited paper, while also assuming 

that Σ1 and Σ2 follow the inverse Wishart distribution – the same as the one considered in 

Wróblewska and Pajor (2019) for Σ in homoscedastic VECs. For 𝑝11 and 𝑝22 in all the VEC-

MSH models we impose uniform priors. 

Bayesian estimation of the models at hand necessitates a use of MCMC methods, including 

the Gibbs sampler (in all the models) and the Forward-Filtering-Backward-Sampling scheme 

(developed by Carter and Kohn, 1994) for sampling latent Markov chain’s state variables; see 

also Jochmann and Koop (2015). Additionally, to handle the label switching, a problem 

inherent to mixture models, we use the permutation sampler designed by Frühwirth-Schnatter 

(2006). Although requiring additional simulations at each MCMC step, prediction within the 

VEC and VEC-MSH models is quite straightforward, owing to a sequential structure of the 

likelihood. 

 

4. Empirical analysis 

The empirical analysis to follow is based on various VEC and VEC-MSH specifications of the 

so-called small models of monetary policy, and considered separately for the Polish and US 

economies. Following Primiceri (2005) and Wróblewska and Pajor (2019), the models 

comprise three variables: inflation rate of consumer prices, unemployment rate and short-term 

interest rate (WIBOR3M for Poland, and the so-called shadow interest rates, calculated 

according to Wu and Xia 2015, for US).3 In both cases we use quarterly data, covering the 

periods: 1998:Q1–2016:Q4 (T = 76 observations, seasonally unadjusted) for Poland, and 

1960:Q1–2015:Q4 (T = 224 observations, seasonally adjusted) for the US; see Fig. 1. 

To account for seasonal effects in the data for Poland, zero-mean centered seasonal dummies 

are introduced in the models (following Wróblewska and Pajor 2019). The dataset for Poland 

                                                                 
2 Details can be provided by the author upon request. 
3 However oversimplified such models may appear from the macroeconomic perspective, we refrain from an 

otherwise due discussion on the limitations and relevant extensions of their structure (for the open economy of 

Poland, in particular). The choice of the models at hand is primarily dictated by our intent to extend the research 

and contribute to the discussion by Wróblewska and Pajor (2019) on predictive performance of heteroscedastic 

VEC models. 
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coincides precisely with the one analysed in Wróblewska and Pajor (2019), which enables us 

to compare the results of both studies. Including here also the US economy is intended to 

broaden the scope of the analysis, and relates to an influential paper by Primiceri (2005). 

 

Figure 1. Modelled data (values on the LHS axis) along with the posterior and predictive probabilities 

of the first state (the RHS axis) 

Note: Vertical lines demark the initial conditions (violet line) and the period of predictive performance evaluation. 

 

In each of the models under study we assume that the order of the underlying VAR process 

equals k = 2 (see Primiceri, 2005, Wróblewska and Pajor, 2019). We consider two alternative 

specifications of the constant term in Eq. (1) (either an unrestricted constant, conventionally 

denoted as d = 3, or a constant restricted to the cointegration relationships: d = 4), and three 

different numbers of cointegration relations (𝑟 ∈ {0, 1, 2}), and the case of a stationary VAR 

system (i.e. 𝑟 = 𝑛 = 3). Models with given d and r are labelled as VEC(d, r) and VEC(d, r)-

MSH. Some of all possible specifications are omitted from further analysis, either due to some 

numerical problems encountered in estimation (VEC(3, 2)-MSH, VEC(3, 3)-MSH for both the 

Polish and US datasets, and VEC(4, 1)-MSH and VEC(4, 2)-MSH for US), or due to their 

absence in Wróblewska and Pajor (2019) (VEC(4, 0) for Poland) or their methodological 

irrelevance (VEC(4, 3 = n), with and without the MSH structure). Eventually, in the US case 

only three VEC-MSH are considered (see Table 2). For the Polish data we additionally include 

two specifications of the VEC-MSF-SBEKK family – the ones that in Wróblewska and Pajor 

(2019) emerged the best (full VEC-MSF-SBEKK) and the worst (VEC-SBEKK). To address 

the problem of label switching in the VEC-MSH models we impose an identification restriction: 

𝑉𝑎𝑟(𝐼𝑛𝑡. 𝑟𝑎𝑡𝑒𝑡|𝑆𝑡 = 1,𝜓𝑡−1, 𝜃) > 𝑉𝑎𝑟(𝐼𝑛𝑡. 𝑟𝑎𝑡𝑒𝑡|𝑆𝑡 = 2,𝜓𝑡−1, 𝜃), so that the first regime 
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features a higher volatility of the interest rates, although we note that the results are ‘robust’ to 

the choice of the underlying variable. Moreover, estimation of the Markov-switching models 

with r  {1, 2} for Poland required a strong tightening of the priors of the adjustment 

coefficients and the elements of the matrix B (see Wróblewska and Pajor, 2019), with their 

standard deviations reduced from 1 in all the other models to ca. 0.032, although the latter 

modification does not affect the prior for the cointegration space. 

The predictive performance (in the sense of density forecasts) of the models under 

consideration is evaluated via series of ex-post one-quarter-ahead density predictions, based on 

a sequence of expanding (recursive) samples, with each model being reestimated upon the 

arrival of each new observation. For the sake of the experiment we spare the final N = 16 and 

N = 56 observations in the case of Poland and US, respectively, so that the forecasting periods 

cover 2013:Q1–2016:Q4 (Poland), and 2002:Q1–2015:Q4 (US). As can be inferred from Fig. 1, 

throughout the entire prediction period for Poland the second regime (of low volatility) prevails 

unequivocally, as opposed to the US data, where the corresponding period witnesses some 

regime changes. Therefore, it is even more interesting to examine and compare the predictive 

abilities of Markov-switching models in these two markedly distinct settings.  

Each of the predictive densities is based upon 200 000 MCMC posterior draws, preceded 

by either 400 000 burn-in passes – for the first of N forecasts – or 10 000 cycles for the 

subsequent N − 1 predictions, with the sampler each time initiated at the final draw of the 

previous run. Density forecasts are evaluated by means of the (decimal) log predictive score 

(LPS; the higher the value, the better), with the difference between LPS’s for two alternative 

models defining the log predictive Bayes factor (LPBF). Their values cumulated over the entire 

ex-post forecasting period are denoted as CLPS and CLPBF, respectively, and presented in 

Tables 1 and 2. 

As can be inferred from Tables 1 and 2, the Markov-switching models prove at least 

marginally (in the case of Poland) or substantially better (US) in terms of LPS. Although for 

the Polish dataset (displaying apparent ‘tranquillity’ throughout the prediction period) the 

difference in the predictive power of VEC and VEC-MSH models is negligible, it is still 

systematic, holding for all variants of d and r, which is most probably attributable to an overall 

higher flexibility of mixture models. Nevertheless, specifications featuring only discrete (rather 

than continuously-valued) volatility changes are still outperformed by the VEC-MSF-SBEKK 

and even VEC-SBEKK models. For the US data, the VEC-MSH specifications gain far more 

advantage over homoscedastic models. As indicated by Fig. 2, this superiority of Markov-
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switching models hinges directly upon evident occurrences of volatility breaks over the 

prediction period, which is quite intuitive. 

 

Table 1. Cumulated log predictive scores (CLPS) and cumulated log predictive Bayes factors (CLPBF) 

in favour of the best model: Poland. Results for VEC-MSF-SBEKK and VEC-SBEKK come from 

Wróblewska and Pajor (2019) 

Ranking (i) d r Model CLPSi CLPBF1i 

1 4 2 VEC-MSF-SBEKK -5.471 0 

2 3 1 VEC-SBEKK -11.287 5.816 

3 4 1 VEC-MSH -12.314 6.843 

4 4 2 VEC-MSH -12.321 6.850 

5 3 0 VEC-MSH -12.442 6.971 

6 4 0 VEC-MSH -12.452 6.981 

7 3 1 VEC-MSH -12.491 7.020 

8 4 2 VEC -12.716 7.245 

9 4 1 VEC -12.797 7.326 

10 3 2 VEC -13.048 7.577 

11 3 1 VEC -13.093 7.622 

12 3 0 VEC -13.377 7.906 

13 3 3 VEC -13.891 8.420 

 

Table 2. Cumulated log predictive scores (CLPS) and cumulated log predictive Bayes factors (CLPBF) 

in favour of the best model: US 

Ranking (i) d r Model CLPSi CLPBF1i 

1 3 1 VEC-MSH -71.590 0 

2 3 0 VEC-MSH -71.997 0.407 

3 4 0 VEC-MSH -72.066 0.476 

4 4 2 VEC -82.768 11.178 

5 4 1 VEC -82.875 11.285 

6 3 2 VEC -82.887 11.297 

7 3 1 VEC -82.974 11.384 

8 4 0 VEC -83.067 11.477 

9 3 0 VEC -83.180 11.590 

10 3 3 VEC -83.569 11.979 

 

Finally, we examine the calibration of density forecasts via PIT histograms, displayed in 

Fig. 3 and 4, along with 95% (non-Bayesian) confidence bands constructed as in Wróblewska 

and Pajor (2019) around the value of 0.2 (representing, in our setting, the ideal case of PIT 

uniformity). Overall, although none of the models considered in these figures proves ideal, it 

appears the introducing Markovian breaks in the conditional covariance matrix of VEC models 

may somewhat improve (more or less visibly) predictive densities calibration. 

 



The 14th Professor Aleksander Zeliaś International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

85 

 
Figure 2. Cumulative log predictive Bayes factors in favour of the best VEC-MSH against the best 

VEC model (solid line; the LHS axis), along with the posterior (red dashed line) and predictive (green 

dashed line) probabilities of the first state (the RHS axis) 
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Figure 3. PIT histograms in the best VEC, VEC-MSH and VEC-MSF-SBEKK models for Poland 
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Figure 4. PIT histograms in the best VEC and VEC-MSH models for US 

 

5. Conclusions 

In the paper we examined and compared probabilistic predictive performance of Bayesian 

homoscedastic VEC models with their extensions allowing for two-state Markov-switching 

heteroscedasticity. To this end, the log predictive score (LPS) and Bayes factors, as well as 

Probability Integral Transform were employed, which are typically used for such assessments. 

In general, the results of our two empirical studies based on data representing, separately, 

the Polish and US economies indicate that allowing for Markovian shifts in conditional 

covariance matrix of VEC models provide at least as good density forecasts as the ones obtained 

within ‘standard’ VEC structures, with the VEC-MSH outperforming the latter in the presence 

of volatility shifts occurring over the prediction period. Nevertheless, the comparison with the 

results presented by Wróblewska and Pajor (2019) implies that enabling Markovian dynamics 

in conditional volatility may still prove empirically insufficient, thereby necessitating a use of 

more sophisticated specifications like MSF-SBEKK. 
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