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Abstract 

A new separability index for groups obtained in cluster analysis has been proposed in the paper. It is assumed 

that the number of groups and object assignments are given. The main idea is based on the squared Euclidean 

distance between each object and the closest one belonging to different group. Sum of these distances should 

be normalized, e.g. by within group sum of squares. The proposed measure can be use also for overlapping or 

fuzzy clusters. 

The results of simulation studies under different models of separability are given. The proposed measure is 

compared to Calinski-Harabasz, Krzanowski-Lai and Rousseeuw indexes. 
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1 Introduction  

There are many measures of the quality of clustering (cluster validity). Migdał-Najman 

(2011) gave comprehensive bibliographic survey of this subject (see also: Everitt, 1995; 

Arabie, Hubert, De Soete, 1998; Everitt et al., 2011). Her paper has 178 references and she 

proposed some classifications of cluster validity measures. In this context, it can look strange 

that we propose another measure. The main idea is based on the squared Euclidean distance 

between each object and the closest one belonging to different group.  

The proposed measure is compared to three popular measures: Caliński-Harabasz (CH), 

Krzanowski-Lai (KL) and Rousseeuw (S) indexes.  

 

2 The new separability index AS 

The new index AS is based on the squared Euclidean distance between each data point x  and 

the closest one belonging to different group, )(xS . Sum of these distances SS is normalized 

by WGSS  which denotes the within-group sum of squares (it is a sum of 

squared Euclidean distances from each point to the center of its cluster). 
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Let X  denotes a set of n  observations (which are v-dimensional points), divided into 

k  separated clusters iC  such that: 
k

1i

iCX



 . Let   ,d  denotes squared Euclidean distance 

between two vectors. 

The AS index is defined as: 

.
WGSS

SS
AS                                                               (1) 

The SS in the numerator of index AS is the sum of :)(xS           
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where )(xS  is defined as:  
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where yx,  are the data points  Xyx,  and )(xC  is a cluster to which x  belongs to. 

The overall within-cluster variance WGSS  is defined as: 

  
 


k

1i iC

iWGSS
x

mx,d                                                     (4) 

where x  is a data point  Xx , im  is the centroid of i -th cluster. 

The optimal number of clusters is the solution with the highest AS index value. 

 

3 Some other criteria for determining the number of groups in a data set 

Let k denote the number of groups (clusters) in a data set. Assume that n denotes the number 

of cases (number of rows in a data set). Each case is described using v quantitative variables 

and each case is viewed as a v-dimensional point in the Euclidean space. Consequently for 

each pair of points a distance can be calculated.  

 

3.1  Caliński-Harabasz criterion (1974) 

Caliński and Harabasz (CH) in their 1974 paper introduced a criterion “to select the value of k 

at which the final partition appears to be best”. They call this criterion the VRC (Variance 

Ratio Criterion) and define it as: 

.VRC
k-n

WGSS

1-k
BGSS

                                                                    (5)  
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CH calculate distances between data-points using squared Euclidean metric. The WGSS denotes 

the within-group sum of squares and it is a sum of distances from each point to the center of 

a cluster it belongs to. The BGSS denotes the between-group sum of squares and it is a sum of 

distances, weighted by the cluster sizes, from each cluster centroid to the overall centroid.  

When the clusters are well separated the BGSS will tend to be large and the WGSS small 

causing the VRC to be large. Consequently the k that gives the largest value of VRC is 

preferable. However in case of multiple local maxima the one with the smallest value of  

k should be chosen.  

CH point out that the VRC is a heuristic that has no evident probabilistic foundation. 

However the VRC has some interesting properties. (1) When all points in a data set are 

equally distant from each other the VRC takes the value of one. (2) When all points are 

uniformly distributed in the space the relationship between k and VRC is monotonic and 

smooth. In this case CH suggest that each point should be considered its own cluster. (3) 

When the clear structure is present there should be a noticeable jump in the value of VRC 

when going from k-1 to k.  

 

3.2  Krzanowski-Lai criterion (1985) 

Krzanowski and Lai (KL) in 1985 introduced a criterion for determining the optimal number 

of groups in a data set. KL assume that the criterion will be used with clustering algorithms 

based on minimizing the within-group sum of squares. 

KL showed that under the assumption that the data set consists of v independent variables 

distributed uniformly with equal variances the expression 
TSS

WGSSv
2

k   equals approximately one 

for any value of k. TSS denotes the total sum of squares. Unfortunately KL simulations 

showed that this result holds poorly in small samples typically encountered in practical data 

analysis. KL also point out that the criterion often gives multiple local optima. However they 

found out that despite this facts the criterion is still useful for determining the optimal number 

of groups. 

 

3.3  Rousseeuw criterion (1987) 

Rousseeuw in 1987 paper introduced a silhouette graph. This graph was meant to be a new 

useful tool aiding in the interpretation of clustering results. It was designed to differentiate the 

clear group structure from merely a data set partition to non-overlapping sets of points. As 
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a side effect a criterion for determining the optimal number of groups in a data set was 

introduced.  

For the i-th data point the average distance between the point and other points belonging 

to the same cluster is calculated and denoted A(i). Next for the i-th data point the average 

distance between the point and other points belonging to some other cluster is calculated and 

repeated for all other clusters. The minimum of those averages is denoted B(i). And finally for 

the i-th data point one gets the S(i): 

 
   

    iB,iAmax

iAiB
iS


 .                                                  (6) 

S(i) takes values in range from -1 to +1. The higher the positive value the more certain it is 

that the point belongs to the correct cluster, since it is close to the rest of the cluster members 

and is far from the members of all other clusters. S(i) close to zero shows uncertain cluster 

membership and the negative value suggests that the point is probably in the wrong cluster.  

The global silhouette index (S) is calculated as an average value of all S(i): 

 
i

iS
n

1
S .                                                            (7) 

 The k that reaches the maximum S is considered optimal. Rousseeuw points out that the 

advantage of the S index is that it was developed without any particular clustering algorithm 

in mind. 

 

4 Simulation studies 

The performance of the proposed separability index AS has been studied through simulations 

carried under some theoretical models. The accuracy of the number of groups specification, 

has been compared to three other indexes described in the previous section. Simulations were 

carried out in R using clusterSim package for Caliński-Hrabasz, Krzanowski-Lai and 

Rousseeuw criteria. On each run of the simulation data was clustered by k-medoids method 

(R package cluster). 

 

Experiment 1 

Equal samples for two groups have been generate from two two-dimensional normal 

distributions: N(-d,0,1,1,0) and N(d,0,1,1,0), taking d = 1 and d = 3. The sample sizes were n 

= 20, 100, 200.  

For d = 3 all criteria correctly identified the number of clusters, as two groups (See Fig. 1 

for AS index). For small sample (n = 20) and N(-1,0,1,1,0) and N(1,0,1,1,0) model, all criteria 
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got lost showing number of clusters bigger than 2. For large samples and d = 1 three criteria, 

all except Krzanowski-Lai identified two clusters. On Fig 1, values of AS index are shown 

against number of clusters. 

 

a)  b) c) 

Fig. 1 a, b, c. AS indexes for different number of clusters with a) n=20, b) n=100, c) n=200 

samples generated from N(-1,0,1,1,0) and N(1,0,1,1,0). 

Source: own calculations. 

 

a) b) c) 

Fig. 2 a, b, c. AS indexes for different number of clusters with a) n=20, b) n=100, c) n=200 

samples generated from N(-3,0,1,1,0) and N(3,0,1,1,0). 

Source: own calculations. 

 

With two groups of points with expected values lying in 6 standard deviations distance, 

the AS index definitely suggests the correct number of clusters. 

 

Experiment 2 

In this experiment samples were generated from four two-dimensional normal distribution, 

moving along coordinate axes. Thus expected values were equal to (d,0), (0,d), (-d,0), (0,-d). 

A unit variance-covariance matrix has been used. Distance d from the center of coordinate 

system has been taken as d = 1, 2, …, 100. We generated four samples of equal size n = 20 

and n=100 objects. Partitions for 2, 3, …, 10 groups were found by k-medoids method.  
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All four indexes performed very well. With small samples of n = 20, Caliński-Harabasz 

and Silhuette identified 4 groups in 99% runs, Krzanowski-Lai in 97%, and AS in 96%. With 

large sample n = 100, all criteria (except Krzanowski-Lai – 98%) got the score of 99%. 

 

 Experiment 3 

In this experiment we have been trying to estimate the probability of correct identification of 

the number of groups in case when they are rather distant to each other. Four groups have 

been generated with the following model: N(3,0,1,1,0), N(0,3,1,1,0), N(-3,0,1,1,0),  

N(0,-3,1,1,0). The probability has been estimated by 1000 simulation runs. The data has been 

also clustered for some ”incorrect” number of clusters 2, 3, …, 10, with k-medoids method. 

 

Four samples of  

equal size n 
AS CH KL S 

30 0.907 0.995 0.664 1.000 

50 0.984 1.000 0.870 1.000 

100 1.000 1.000 0.992 1.000 

Table 1. Probability of correct identification of the number of groups in Experiment 3. 

Source: own calculations. 

 

The probability of correct identification increases with the sample size. Silhuette index 

looks ideal even for small samples. 

 

Experiment 4  

Four samples were generated from four two-dimensional normal distributions with unit 

variance-covariance matrix and expected values equal to (d,0), (0,d), (-d,0), (0,-d) with d = 1, 

2, …, 100. Then random noise was added, as extra 5% or 10% of previously generated points. 

The noise came from uniform distribution based on rectangular area defined by 

        .y,x,y,x,y,x,y,x maxmaxminmaxmaxminminmin  On Fig. 3 we can see one example of data 

generated in above described way.  
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Fig. 3. Four clusters, each consisting of 100 points, d=22, with 5%. 

Source: own calculations. 

 

Random Noise AS CH KL S 

5% 

10% 

98% 

99% 

16% 

14% 

21% 

11% 

77% 

56% 

Table 2. Percentage of correct identifications of number of clusters for d=1,…100. 

Source: own calculations. 

 

Simulation experiment with noise shows (See Table 2) the great advantage of our proposal 

over three other criteria. 

 

Conclusions 

Initial simulation studies reveals that the proposed separability index identifies the number of 

groups generally similarly to other three measures, expect the presence of random noise. In 

that case AS clearly outperforms the other three indexes. 
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