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A bivariate model of the number of children and the age at first birth 
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Abstract 

We formulate a joint statistical model of two important demographic variables: (i) the number of children born 

by a given woman and (ii) her age at the birth of her first child. The proposed specification is based on the so-

called ZIP-CP model of bivariate Poisson-type regression that enables to easily examine dependence between 

two count variables. In our specification the number of children is a ZIP-type variable (in the hurdle model 

version), while the conditional distribution of the age at first childbirth given the number of children is a Poisson 

distribution either left-truncated (when a woman has not had any child) or right-truncated (if a woman gave birth 

to at least one child). The expected values of the underlying Poisson distributions as well as the relation between 

both variables are functions of the age of a woman and some socio-economic explanatory variables. 
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1 Introduction 

Identifying socio-economic factors determining fertility (as well as its forecasting) is a crucial 

issue of current demographic research. The very low level of fertility observed nowadays in 

many European countries might be caused by the combination of both the postponement of 

childbearing to older age (the tempo effect) and the tendency to have smaller families (the 

quantum effect) (Bongaarts and Feeney, 1998; Sobotka, 2003). Examining which of these two 

effects plays a major role in the reproductive behaviour of a contemporary woman is 

necessary to effectively forecast her completed fertility (Lee, 1981; Kohler et al., 2001).  

It seems that the completed family size and the age at first birth are usually negatively 

related, meaning that women who enter motherhood at late ages have fewer children (Trussell 

and Menken, 1978; Kohler et al., 2001). There are many biological and social reasons for 

such negative correlation (Leridon and Slama, 2008; Schmidt et al., 2012), nevertheless the 

dependence may change with contextual factors and socio-economic characteristics of 

a woman (Neels and De Wachter 2010; Berrington et al., 2015). Thus, it is important to 

jointly model the two basic variables: age at entry into motherhood and the number of 

                                                 
1
 Corresponding author: Cracow University of Economics, ul. Rakowicka 27, 31-510 Kraków, 

Poland, e-mail: eeosiewa@cyf-kr.edu.pl. 
2 Cracow University of Economics, ul. Rakowicka 27, 31-510 Kraków, Poland, e-mail: 

beata.osiewalska@uek.krakow.pl. 



The 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

262 

children – first, in order to test their dependence and its possible changing character; second, 

to make statistical inferences more efficient when the tested dependence is present. 

In this paper we propose a joint bivariate statistical model of the number of children born 

by a given woman and her age at the birth of her first child. The first variable can take only 

non-negative integer values, while the second can be treated either as a continuous variable or 

as a count variable. Here we assume that age is measured in full years (above some threshold, 

e.g. 15 years old), so we jointly model two count variables. By adopting such an approach we 

can take advantage of recent specifications proposed in the statistical literature. 

Modelling univariate count data by means of Poisson type regression models is nowadays 

a routine approach, and several specifications have been proposed for the bivariate case; see 

e.g. Cameron and Trivedi (1998, 2005). In this paper we modify the so-called ZIP-CP (zero 

inflated Poisson – conditional Poisson) model, analysed by Osiewalski (2012) and Osiewalski 

and Marzec (2016), which is the generalised version of the P-CP (Poisson – conditional 

Poisson) specification, proposed by Berkhout and Plug (2004). We replace the regular 

Poisson conditional part by a more appropriate distribution of the age at first childbirth given 

the number of children. This conditional distribution is a Poisson distribution, either left-

truncated (when a woman has not had any child) or right-truncated (if a woman gave birth to 

at least one child). We obtain the likelihood function for our non-standard bivariate Poisson-

type model, formulate important parametric hypotheses and consider forecasting issues. In 

order to conduct exact small-sample inference, we propose the Bayesian approach equipped 

with MCMC simulation tools. A preliminary empirical illustration is based on the 

Generations and Gender Survey (GGS) data for Poland. 

In the next section we present the probabilistic foundations of our model, i.e. the discrete 

bivariate distribution used to jointly describe two demographic variables. Section 3 is devoted 

to our statistical model, the form of the likelihood function and the Bayesian analysis. Section 

4 contains a preliminary empirical example. 

 

2 Foundations of the new statistical model 

We consider the joint distribution of two random variables (Y1, Y2) that can take non-negative 

integer values. In the bivariate P-CP distribution analysed by Berkhout and Plug (2004) the 

probability distribution of (Y1, Y2) is as follows: 

),()(}|Pr{}Pr{},Pr{ 12121 ijhigiYjYiYjYiY  ,  (1) 
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where }0{, Nji , the marginal distribution of Y1 is Poisson with mean and variance 1, and 

the conditional distribution of Y2 given Y1 is Poisson with mean and variance 2exp(Y1), i.e. 

!/)exp())](exp(exp[),(,!/)()exp()( 2211 jijiijhiig ji   .  (2) 

If ≠0, then two count variables are stochastically dependent and the variance of Y2 is 

greater than its expectation. The dependence between these variables leads to the inflated 

variance of Y2, which is often observed in empirical count data. The Poisson distribution of Y1 

does not have this property. Also, the P-CP model puts restrictions on the dependence of two 

variables, as the sign of covariance between Y1 and Y2 depends only on the sign of , and not 

on 1 or 2, which are described by explanatory variables in statistical applications. An 

appropriate generalisation was proposed by Osiewalski (2012); it allows for the dependence 

of the sign of covariance on 1. This more general class of distributions (called ZIP-CP) is 

characterized by the same conditional distribution of Y2 given Y1, ),(}|Pr{ 12 ijhiYjY  , 

and by the ZIP-type distribution of Y1, with zero treated separately: 
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where γ belongs to the (0, 1) interval, and g and h are the functions as in (2). If γ=g(0), then 

}Pr{)()(}{Pr 1

*

1

* iYigigiY  ; we have the P-CP case. If γ>g(0), the distribution of 

Y1 is of the ZIP type. However, the specification (3) is more general as it also allows γ<g(0); it 

is known in the literature as the hurdle model (Cameron and Trivedi, 2005, p. 680) and is 

compared to the original ZIP model by Winkelman (2008). The hurdle model form of our ZIP 

type specification for Y1 leads to a very simple statistical specification, making estimation – as 

well as testing of the standard Poisson case – relatively easy. The ZIP-CP distribution enables 

inflating variances of both count variables (although they are not symmetrically treated) and 

making their dependence more complex than in the P-CP case. 

As yet we have not focused on the interpretation of Y2 (the age at first birth); this variable 

cannot have the regular Poisson conditional distribution given Y1. Let a be the actual age of 

a woman and let b denote the end of the reproductive age. We assume that the conditional 

distribution of Y2 given Y1 is Poisson, but either right-truncated at min{a, b} (if Y1>0) or left-

truncated at a (if Y1=0). In the first case (a woman has already had at least one child) the age 

at first birth has to be between the beginning of the reproductive age and either woman’s 

current age a or the end of the reproductive age b (whichever is smaller). In the latter case, 

when a woman has had no children (Y1=0), the age at first birth has to be between a and b. 
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Thus }0|Pr{ 12  YbYa  is the probability that a woman, which is childless at age a, will 

have a child (and obviously equals to zero if a>b), while Pr{Y2 > b | Y1=0} is the probability 

that she will remain childless (it equals to one if ba  ). For further consideration, assume 

that age is counted in full years exceeding some threshold, e.g. in years over 15; that is, b=34 

(as the reproductive age of a woman is [15, 49]) and at this threshold a=0 and Y2=0. 

While the interpretation of Y1 is straightforward (the number of children ever born by a 

woman), the meaning of Y2 is more subtle, as only its values up to b can represent the age at 

first birth. In the conditional distribution of Y2 given Y1=0, which is not truncated at b, the 

values above b serve to describe childlessness after the reproductive age, by attaching 

a positive probability to such situation. Summing up the assumptions we have already 

introduced, we propose the following joint distribution of Y1 and Y2: 
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3 The statistical model, its likelihood function and Bayesian analysis 

The statistical model proposed in this paper is designed to cope with cross-section micro-level 

data for women that may differ in terms of age and other characteristics. Consider K bivariate 

observations (Y1k, Y2k; k = 1,2,...,K), where Y1k is the number of children born by the k-th 

woman and Y2k denotes her age at first birth (in full years over 15). The pairs (Y1k, Y2k) are 

independent and have different distributions with the probability function of the general form 

(4), so our model amounts to the following parametric class of distributions: 
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where ak is the actual age of the k-th woman (in full years over 15), 

,!/)()exp()( 11 iig i

kkk   )),exp(exp()exp(),exp( 1111  

kkk
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kkk xzex k   

32222 ),exp(,!/)exp())](exp(exp[),(  kkkkk

j

kkkk swjijiijh  . 

In the above formulas xk, zk and wk are row vectors of explanatory variables that determine 

the marginal probabilities of Y1k and conditional probabilities of Y2k given Y1k, respectively, 

while sk is a row vector of explanatory variables explaining possible differences in 

dependence between Y2k and Y1k for different groups of women. The age variable, ak, seems 

an obvious explanatory variable, appearing in all four vectors – xk, zk, wk and sk. Obviously, 

the role of the explanatory variables depends on the column vectors of parameters 1, 2, 3 

and grouped in , the vector of all parameters. In particular, stochastic independence 

between the number of children (Y1k) and mother’s age at first birth (Y2k) is equivalent to 

3=0, while ≠0 means that Pr*{Y1k=0; } deviates from the value corresponding to the 

Poisson distribution with mean (and variance) 1k. 

When specifying the likelihood function that corresponds to (5) we have to remember that 

the age at first birth (Y2k) is not observed when the woman has not born a child (Y1k=0). Thus, 

the likelihood function is the product of K=K0+K1 factors, where K0 factors (of the form k) 

correspond to the probability of zero in the marginal distribution Pr*{Y1k=i; } and K1 factors 

correspond to the joint probability (5) for i > 0 and },min{ baj k . Denote the observed 

values of Y1k and Y2k as y1k and y2k, respectively; then the likelihood function takes the form 
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where y groups all the values y1k and y2k. The likelihood function (6) enables us to test many 

specific parametric hypotheses, but the most important from the theoretical point of view is 

the one stating that 3=0. If 3=0, Y1k and Y2k are independent random variables that lead to 

two separate models and likelihood functions: one built for K=K0+K1 values y1k and involving 

1 and , the other built for K1 values y2k and involving 2. Only for 3≠0 our joint bivariate 

model can lead to inferential gains and makes joint forecasting of both demographic variables 

more efficient than treating them separately. 

Our inference on the parameters and unobserved values of both demographic variables will 

follow the Bayesian statistical approach, where a probability measure (prior distribution) on the 

parameter space is defined. We assume prior independence among all parameters in  and the 
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standard normal prior N(0, 1) for each individual parameter. Zero prior expectations mean that 

the simplest model (with no ZIP effect, no dependence and no explanatory variables) gets the 

highest prior chance, but unitary standard deviations ensure significant prior chances for 

specifications being far from the simplest one. It seems that such simple joint prior distribution 

brings little initial information and guarantees easy Monte Carlo simulations from the posterior 

distribution. Obviously, the sensitivity of inferences with respect to the form of the prior 

distribution is an empirical question, to be answered with the data at hand. Following Bayesian 

statistical paradigm makes our inference not only exact (small-sample), despite a non-standard 

form of the likelihood (6), but also coherent and intuitive. 

The statistical analysis based on our model (5) can serve different purposes. First, using 

the posterior density      yLpyp ;|   , where  p  denotes the prior density, we can 

test basic hypotheses and point at the explanatory variables that are most important in 

determining the number of children and the age at first birth. The simplest way to test 

hypotheses is the so-called Lindley-type approach, see e.g. Osiewalski and Marzec (2016). 

Second, our model can serve different forecasting purposes. For a woman outside the 

dataset, but with given characteristics represented by the row vectors xf, zf, wf and sf, the 

predictive probability that Y1f = i and Y2f = j is obtained by averaging (5), interpreted as the 

conditional probability given , with p( | y) as the weight function:  

 dypjYiYyjYiY ffff   )|(}|,{Pr}|,{Pr 21

*

21

* .  (7) 

In order to examine the explanatory power of our model and to infer on fertility of women 

with certain characteristics, we compute the predictive probabilities: marginal for Y1f = i and 

conditional for Y2f = j given Y1f > 0: 
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they can be compared to observed frequencies. 

Third, interesting forecasts can be made for women from the dataset. In this case we can 

consider one of the complimentary predictive probabilities: that a woman, which is childless 

at age a, will have a child or that she will remain childless. However, this is left for future 

research. 

In order to simulate samples from the joint posterior distribution of , the vector of model 

parameters, and to approximate the integrals above, we will use the Metropolis-Hastings 

sequential chain, one of the Markov Chain Monte Carlo (MCMC) simulation techniques. 



The 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

267 

4 A preliminary empirical example 

Our empirical example is based on the first wave GGS data for Poland. The survey was 

conducted in 2011 and includes respondents between 18 and 79 years old. The only purpose 

of our preliminary analysis is to check whether the proposed model can describe small data 

sufficiently well. Thus we have selected only women at the age of 33, who have completed 

tertiary education, are married and live in urban areas. Our final sample consists of only 

52 women, of which 7 are childless (13,5%). The half of the women have one child (48,1%), 

one-third have two children (34,6%) and the rest (3,8%) have already three children. The most 

common age at first birth is 28 (22,2%). Almost half of the women gave birth after that age 

(46,7%), and one-third have the first child before the age of 28 (31,1%). At this stage we do 

not include any explanatory variables (only intercepts), thus the final model includes four 

scalar parameters 1, 2, 3 and  

The basic characteristics of marginal posterior distributions (means, standard deviations, 

0.05 and 0.95 quantiles) are presented in Table 1. All the distributions, besides the marginal 

posterior distribution of 1, are separated from zero. In particular, it is a posteriori almost 

certain that 3 is negative. This confirms the negative dependence between the number of 

children and the age at first birth; it also proves the necessity to jointly model these two 

variables. In addition, the parameter  is positive (with very high posterior probability), thus 

the ZIP effect is present and childlessness seems more frequent than the standard Poisson 

distribution may capture. 

 

θi E(θi|y) D(θi|y) q0.05(θi|y) q0.95(θi|y) 

1 -0.144 0.212 -0.499 0.198 

2 3.054 0.166 2.786 3.327 

3 -0.256 0.099 -0.419 -0.095 

 0.814 0.285 0.355 1.290 

Table 1. Characteristics of marginal posterior distributions. 

 

The marginal predictive distribution of the number of children, given by (8), is compared 

to the frequencies observed in the data and presented in Figure 1 (left-hand side). The model 

efficiently represents the data and properly predicts the number of children of a given woman 

with chosen characteristics. Although at this stage it underestimates the probability of having 

two children, we believe that the accuracy will be improved through enlarging the sample size 
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(by considering women of different age and other characteristics) and, therefore, including 

explanatory variables. The conditional predictive distribution (9) of the age at first birth and 

the frequencies observed in the data (for 45 women with at least one child) are shown in 

Figure 1 (right-hand side). As for the very limited sample, the model performs exceptionally 

well and accurately represents the data. 

 

  

Fig. 1. The marginal predictive distribution of the number of children and the conditional 

predictive distribution of the age at first birth versus frequencies observed in the data. 

 

To conclude, using our modified ZIP-CP model to jointly analyse the number of children 

and the age at first birth seems to be well justified by both the dependence between the two 

variables and the overrepresentation of zero (childlessness). The model also provides with 

reasonable predictions and thus serves a promising tool to infer about the fertility of a woman 

(on the basis of much larger and more informative samples). 
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