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Density forecasting performance of alternative GARCH and DCS models 

for daily financial returns 
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Abstract 

The objective of the paper is to verify predictive performance (in terms of density forecasts) of some of recently 

proposed models for daily financial returns. We focus on Beta-Gen-t-EGARCH specification proposed by 

Harvey and Lange (2015,2016), which uses a generalized-t conditional distribution. We conduct an empirical 

comparison of out-of-sample predictive performance against some well-established univariate alternatives. We 

use daily S&P500 logarithmic returns and investigate sequences of 1525 density forecasts for horizons of 1 to 6 

trading days ahead (3rd of January, 2011 till 30th of December, 2016) and the training sample begins on 3rd of 

January, 2006. We obtain the density forecasts using Bayesian methods. A general Beta-Gen-t-EGARCH model 

dominates other specifications in terms of criteria for density forecast comparison like LPS and CRPS. 

Moreover, it provides best estimates of Value-at-Risk. In general the results indicate the importance of 

asymmetric modelling of the news impact curve and of heavy-tailed conditional distribution, which is not 

unexpected; the results also suggest importance of tail asymmetry which is not addressed here.  
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1 Introduction 

There exists a growing body of methods and models available for empirical financial analyses 

focusing on daily asset returns dynamics. An issue that has been receiving a lot of attention is 

that of risk evaluation. The related problem of time-series modelling is that of density 

forecasting. Crucial issues under consideration are those of adequate quantification of 

uncertainty and estimation of probability of extreme events. At the same time, the volume of 

available data seems to be growing very rapidly. Risk evaluation often requires costly 

computational methods and for real-time analysis it is important to balance advancement of 

computations against feasibility.  

Here we focus on recent developments in the field of GARCH models that are popular in 

applied finance also because of their computational convenience. Well-established tools 

include extensions of the basic GARCH specification like EGARCH, GJR-GARCH among 

others. Moreover, simple conditional normality is often generalized to capture features of the 
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conditional distribution like its heavy tails. A popular choice is that of t distribution, though 

some authors suggest the GED distribution instead.  

An interesting class of dynamic models is based on the idea of Dynamic Conditional 

Score approach which was proposed by Harvey (2013). A related strand of research develops 

models under the label of Generalized Autoregressive Score (GAS), see Creal et al. (2011, 

2013). The general idea of the approach is that features of the conditional sampling 

distribution are updated in a way that takes into account an autoregressive update and a score 

of the conditional sampling distribution. This leads to a class of dynamic models that is 

similar to GARCH models in the spirit – the models are not based on latent processes, though 

are likely to provide gains in terms of estimation feasibility. 

In particular we focus on Beta-Gen-t-EGARCH model, see Harvey and Lange, (2015, 

2016) and Harvey and Sucarrat (2014). The model not only makes use of the novel idea of 

dynamic updating. It also features an interesting (and flexible) form of the conditional 

sampling distribution, being a generalized t distribution. The purpose of the paper is to verify 

whether the model features lead to benefits in the applied work, in particular whether out-of-

sample density predictive performance is competitive compared to some well-established 

specifications. An important point emphasized here is that – contrary to the work of Harvey 

and his co-authors – the paper makes use of Bayesian inference methods. This is because it is 

difficult to find any other modelling approach that allows for estimation uncertainty to be 

taken into account in a coherent way when constructing density forecasts.  

The rest of the paper is organized as follows. Firstly, the types parametric of conditional 

distributions under consideration are reviewed. Secondly, basic GARCH models are recalled 

and Beta-Gen-t-EGARCH specification is introduced. Thirdly, some remarks on Bayesian 

model specification, estimation and prediction are considered. Fourthly, an empirical analysis 

(using daily S&P500 returns) is conducted, with out-of-sample predictive experiments on 

expanding sub-samples. The general predictive performance is examined using scoring rules 

that are appropriate for evaluation of density forecasts, namely the Log-Predictive Score 

(LPS) and Continuous Ranked Probability Score (CRPS) – see Gneiting and Raftery (2007). 

Moreover, adequacy of tail forecasts is examined in detail, as quality of Value-at-Risk 

estimates is discussed.  

 

2 A generalized t distribution 

There exists a number of generalizations of t-distribution that are of interest. Here we focus 

on a special case with the probability density function of the following form: 
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with location parameter  , scale parameter   and two shape parameters   and   (see 

Theodossiou, 1998, Harvey and Lange, 2016). The normalizing constant is given by: 

  
 

.
/1,/

1

2
=,

/1 




 B
K  (2) 

The distribution nests a number of interesting special cases. Firstly, as 2  it becomes 

a Student t-distribution with   degrees of freedom. Moreover, as  , the limiting case is 

the GED i.e. the Generalized Error Distribution, also known as the Exponential Power 

Distribution (EPD). Hence the generalized t-distribution also encompasses the Gaussian and 

the Laplace cases - see the discussion in Harvey and Lange (2016) and references therein for 

derivations of the limiting cases. The distribution seems appealing for financial applications 

since its tail behavior depends on two parameters (namely   and  ). Though   controls also 

the shape of the distribution around the mode, it seems reasonable to verify whether such 

a general distribution can be used to improve performance of density forecasts and risk 

evaluation. 

 

3 GARCH and DCS models under consideration 

Consider the following dynamic specification for daily financial logarithmic returns ty : 

 ttt uy    (3) 

with 

 ttt uu   1  (4) 

and  

 
ttt zh . (5) 

 A standard AR(1)-GARCH(1,1) specification assumes that tz  represents a sequence of 

independent and identically distributed zero-mean and unit-variance random variables. 

Moreover,  t  and: 

 11

2
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 In the GJR GARCH specification of Glosten et al. (1993) the parameter 1  takes different 

values depending on the sign of 1t :  
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 This allows for asymmetry of the news impact curve (in such a model it is possible that 

negative “surprises” lead to increased conditional volatility while positive surprises do not). 

The GJR effect is very often found empirically important. Another option is to consider so-

called In-Mean effect that aims to capture the leverage effect:  

 tt h  . (8) 

 Parametric restrictions are of course necessary to ensure that the conditional variance th  is 

positive; further restrictions ensure stationarity of the model. 

The simple GARCH-type models have certain disadvantages; an effort to deal with some 

of them has led to a development of the EGARCH model, where log-volatility is updated 

instead of volatility, see Nelson (1991). Here we are going to follow Harvey and Lange (2015, 

2016) who derive similar model from the idea of Dynamic Conditional Score approach. It can 

be used to construct the following dynamic updating mechanism. Assume that  ln  i.e.   

denotes logarithm of scale of the conditional distribution of error terms. Let: 

   111   ttt w . (9) 

where 1tw  denotes score of the conditional distribution wrt.   at t-1 i.e. a derivative of log-

(conditional) density at the actual outturn. Harvey and Lange (2016) consider also an 

asymmetric specification: 

   *

1

*

111   tttt ww  . (10) 

with: 

   1sgn*  tttt wyw  , (11) 

where  ,  ,   and *  are model parameters. Similar approach can be taken for updating of 

conditional location parameter. Moreover, the expressions for the score functions (depending 

on the class of the conditional distribution) as well as the relationship between location and 

log-scale score is discussed in Harvey (2013) and Harvey and Lange (2016).  

The above formulas define model classes considered in the paper. The first group of 

“traditional” models is that of AR-GARCH class. For the model class we assume that the 

conditional distribution is Student t with   degrees of freedom. The models under 

consideration include a limiting case of conditional normality with  . The volatility 

equation is either of GARCH (1,1) form or of GJR (1,1) form.  

The other class of models that includes the “novel” specifications assume that the 

conditional distribution is of the generalized t form. Moreover, the conditional location and 

conditional scale is updated according to the DCS idea. Below a convention for labelling is 
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used according to which the above EGARCH model is denoted by S/L-DCS(1,1)-Gt-AL-AS, 

where S/L-DCS(1,1) denotes DCS-updating of conditional scale (S) and location (L), Gt 

denotes the conditional distribution (being generalized t given by (1)), and AL and AS 

indicate that both scale and location equation feature asymmetric form of the type (10). 

Special (or limiting) cases as to the conditional distribution are labelled GED, t or N for GED, 

Student t and Gaussian distribution.  

 

4 Bayesian model specification, estimation and prediction 

Bayesian estimation of the model class outlined above requires certain prior assumptions as to 

model parameters. Here the assumptions are somewhat simple, since the number of 

observations is rather large, as it is usually the case with financial returns. Hence we assume 

that even if the prior structure is not fully justified from the theoretical point of view, it is not 

going to affect the predictive performance in a serious way, as any irrelevant prior 

information should be updated by the information coming from the training sample.  

Priors used in the paper are independent and proper, the latter is important as it is well 

known that the use of improper priors for parameters controlling tail thickness might cause 

theoretical problems as to the existence of the proper posterior with finite moments. 

Throughout the paper all the autoregressive parameters feature flat priors do not exceeding the 

(-1,1) interval, flat priors are also assumed for 1  and 1 . The score parameters   are 

assumed to be a priori t-distributed. For   we assume a prior that is restricted to arbitrarily 

chosen range (1.05,6.05) covering empirically relevant cases and is practically uniform over 

the range. Prior for   assumes that the parameter is restricted to the range (2.01,150) since it 

ensures that the conditional variance exists. The upper bound is used for numerical 

convenience only and the restriction has very limited empirical consequences.  

The inference is conducted using MCMC techniques. Firstly, the posterior distribution is 

evaluated using a Metropolis-Hastings algorithm with a random walk proposal. Based on the 

results an Independent version of the Metropolis-Hastings algorithm is constructed. This is 

crucial for the predictive exercise conducted here. As all the models have likelihood that is 

fully sequential, if one can construct a proposal that is valid for all the subsamples within the 

expanding sample exercise, evaluation of the likelihood for all the samples is equivalent to its 

evaluation for the longest subsample. Hence the same proposal can be used for all the 

instances of the model (though the acceptance has to be addressed separately, so that each 
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subsample has the associated MCMC chain). Within such a setup it is possible to undertake 

a sequential forecasting exercise of that complexity in a practical timespan.  

 

5 Empirical model comparison: analysis of daily S&P500 returns 2006-2016  

For the sake of the empirical comparison we analyse daily S&P500 logarithmic returns (based 

on closing prices), depicted in Figure 1. We use a sequence of expanding samples, the first 

observation corresponding to the 3rd of January, 2006. The shortest sample ends on 31st of 

December, 2010 (1259 observations) and it covers the period of the global financial crisis, 

with large negative returns of 15th of October and 1st of December 2008. The longest sample 

ends on 30th of December, 2016 (2751 observations). 

 

Model label LPS CRPS std. dev. q0.95-q0.05 IQR q0.6-q0.4 

AR(1)-N-GARCH(1,1) -1873.59 0.486 0.92 3.04 1.24 0.47 

AR(1)-t-GARCH(1,1) -1834.82 0.485 0.95 2.95 1.07 0.39 

AR(1)-t-IM-GARCH(1,1) -1832.24 0.484 0.95 2.95 1.07 0.39 

AR(1)-N-GJR(1,1) -1833.31 0.482 0.92 3.01 1.23 0.46 

AR(1)-t-GJR(1,1) -1803.54 0.481 0.94 2.95 1.08 0.40 

AR(1)-t-IM-GJR(1,1) -1796.75 0.480 0.94 2.96 1.08 0.40 

S/L-DCS(1,1)-Gt-AL-AS -1795.70 0.480 0.94 3.09 1.06 0.37 

S/L-DCS(1,1)-Gt-AS -1796.42 0.480 0.95 3.08 1.06 0.37 

S/L-DCS(1,1)-GED-AS -1800.23 0.480 0.95 3.12 1.05 0.36 

S/L-DCS(1,1)-t-AS -1798.89 0.482 0.94 3.00 1.11 0.41 

S/L-DCS(1,1)-Gt -1837.52 0.485 0.93 3.05 1.03 0.36 

S/L-DCS(1,1)-t -1843.27 0.487 0.93 2.95 1.08 0.40 

Table 1. Overall predictive performance for h = 1; LPS is cumulated, CRPS is averaged, 

std. dev. denotes average standard deviation of the predictive distribution, the last three 

columns depict averaged distance between respective quantiles of predictive distributions. 
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Fig. 1. S&P500 daily logarithmic returns, 2006-2016. 

 

Model label LPS CRPS std. dev. q0.95-q0.05 IQR q0.6-q0.4 

AR(1)-N-GARCH(1,1) -1887.41 0.487 0.93 3.06 1.25 0.47 

AR(1)-t-GARCH(1,1) -1844.5 0.487 0.96 2.98 1.07 0.39 

AR(1)-t-IM-GARCH(1,1) -1841.27 0.485 0.96 2.98 1.07 0.39 

AR(1)-N-GJR(1,1) -1843.15 0.484 0.92 3.03 1.23 0.46 

AR(1)-t-GJR(1,1) -1815.43 0.483 0.95 2.97 1.08 0.40 

AR(1)-t-IM-GJR(1,1) -1813.43 0.482 0.94 2.96 1.08 0.40 

S/L-DCS(1,1)-Gt-AL-AS -1811.49 0.482 0.95 3.1 1.06 0.37 

S/L-DCS(1,1)-Gt-AS -1814.38 0.482 0.95 3.09 1.05 0.37 

S/L-DCS(1,1)-GED-AS -1817.22 0.483 0.95 3.12 1.05 0.36 

S/L-DCS(1,1)-t-AS -1816.8 0.483 0.95 3.01 1.11 0.41 

S/L-DCS(1,1)-Gt -1854.29 0.486 0.94 3.08 1.03 0.36 

S/L-DCS(1,1)-t -1852.54 0.49 0.94 2.97 1.09 0.40 

Table 2. Overall predictive performance for h = 2, LPS is cumulated, CRPS is averaged, 

std. dev. denotes average standard deviation of the predictive distribution, the last three 

columns depict averaged distance between respective quantiles of predictive distributions. 

 

The data from the first two weeks of January 2017 are used for forecast evaluation, as we 

consider prediction horizons ranging from 1 to 6 trading days ahead. Hence the ex-post 

evaluation of predictive performance is based on sequences of 1510 realized forecasts for 
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each horizon. All the models are reestimated with each new observation added. Basic results 

of the comparison are given in Table 1 and Table 2, for one-day-ahead and two-days-ahead 

forecasts, respectively. The results are similar for horizons up to 6 days ahead. 

 
  

Model label 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

AR(1)-N-GARCH(1,1) 2.03 3.02 4 4.66 5.51 6.36 7.08 8.2 8.85 9.57 

AR(1)-t-GARCH(1,1) 1.25 2.62 4 5.38 6.3 7.61 8.72 9.77 10.69 11.87 

AR(1)-t-IM-GARCH(1,1) 1.25 2.62 3.93 5.11 6.3 7.87 8.59 9.77 10.69 12.07 

AR(1)-N-GJR(1,1) 1.77 3.02 3.54 4.39 5.31 6.36 6.89 7.74 8.26 8.85 

AR(1)-t-GJR(1,1) 1.11 2.75 3.8 5.05 6.16 7.34 8.2 8.98 9.77 10.75 

AR(1)-t-IM-GJR(1,1) 1.11 2.75 3.8 4.85 6.16 7.28 8.13 8.98 9.9 11.02 

S/L-DCS(1,1)-Gt-AL-AS 1.05 2.3 3.34 4.13 5.18 6.56 7.48 8.72 9.38 10.03 

S/L-DCS(1,1)-Gt-AS 1.05 2.36 3.34 4.26 5.44 6.62 7.48 8.79 9.57 10.03 

S/L-DCS(1,1)-GED-AS 1.05 2.16 3.21 4.13 5.38 6.43 7.41 8.72 9.51 10.03 

S/L-DCS(1,1)-t-AS 1.31 2.75 3.67 4.79 6.03 6.89 7.8 8.72 9.31 10.43 

S/L-DCS(1,1)-Gt 1.44 2.56 3.74 4.98 6.43 7.34 8.72 9.77 10.62 11.48 

S/L-DCS(1,1)-t 1.64 2.82 4.26 5.7 7.08 7.87 9.11 9.9 10.82 11.87 

Table 3. Lower tail predictive performance (h = 1) – empirical fraction of realized forecasts 

that exceed quantile of order  = 1%,…,10% of the predictive distribution. 

 

Values of LPS (computed with natural log, the higher the better) and CRPS (the lower the 

better, as it can be perceived as a generalization of ex-post absolute error) shown in Table 1 

and Table 2 suggests that the model that dominates the comparison is the Beta-Gen-t-

EGARCH with asymmetry in scale and location (S/L-DCS(1,1)-Gt-AL-AS), though it is 

followed by the AR(1)-GJR-GARCH model with conditional t-distribution and In-Mean 

effect. Asymmetry in the volatility equation (introduced via *  or 

1  parameters) seems to 

be the most important factor for goodness-of-fit measured by the LPS. Differences in the 

average predictive standard deviation or average length of predictive intervals (constructed 

from quantiles) convey some information as to differences in shape of the predictive 

distribution between the models implied by the differences in assumptions concerning the 

type of the conditional distribution. VaR estimates perform best for S/L-DCS(1,1)-Gt-AL-AS, 
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followed by the model with GED distribution. Interestingly for h = 1 N-GARCH model 

performs badly for 0.01 <  < 0.05 and has good performance for 0.05 <  < 0.1. 

 

Conclusions 

The objective of the paper is to verify predictive performance (in terms of density forecasts) 

of some of recently proposed models for daily financial returns. We focus on Beta-Gen-t-

EGARCH specification of Harvey and Lange (2015, 2016). We conduct an empirical 

comparison of out-of-sample predictive performance of the model against some of 

alternatives that are well-established in empirical finance, like GJR-t-GARCH model. As the 

point of interest here is on density forecasting performance (in particular risk evaluation) it is 

important that estimation uncertainty problem is addressed. This is even more important as 

the model under consideration uses a complicated conditional sampling distribution, namely 

a Generalized t-distribution. The distribution nests a number of interesting special cases such 

as t distribution and GED distribution. Quantification of the estimation uncertainty for shape 

(in particular tail) parameters might be challenging though it has to be taken into account for 

the sake of density forecasting. This is why we make use of Bayesian inference methods 

which is an interesting contribution.  

The empirical comparison conducted here uses daily S&P500 logarithmic returns data. 

We investigate sequences of 1525 density forecasts. The results confirm that the new 

specification is an interesting tool of empirical financial analyses, as Beta-Gen-t-EGARCH 

(with asymmetry in log-scale equation) dominates other specifications in terms of criteria for 

density forecast comparison like LPS or CRPS in all the horizons under consideration (though 

the difference against the best ‘traditional’ model is not large). Moreover, Beta-Gen-t-

EGARCH provides best VaR estimates during the verification period. However, the gain over 

the AR(1)-t-GJR-In-Mean model is rather moderate. In general the results indicate the 

importance of asymmetric modelling of the news impact curve and of heavy-tailed 

conditional distribution, which is not unexpected. Moreover, the results suggest that tail 

asymmetry might be an important feature of such models. This is because all the models 

underestimate risk in the lower tail and overestimate risk in the upper tail (according to VaR 

results) which is a suggestion for further research. 
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