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Exponential smoothing models with time-varying periodic parameters 

Łukasz Lenart1 

 

Abstract 

In the literature there is a growing number of models with time-varying in time parameters. The purpose of this 

article is to show the reduced form for the linear innovations model with time-varying periodic in time 

parameters. It will be show that when the state variables are eliminated from a linear innovations state space 

model with time-varying periodic in time parameters, an Periodic Autoregressive Integrated Moving Average 

model (PARIMA in short) with equality restrictions on parameters is obtained. This is the generalization for 

reduced form of the state space model with constant in time parameters. In particular, known models called are 

generalized to the periodic case. Finally, the real data example with macroeconomic data will be presented where 

the performance of competing models (based on Logarithmic Score) in pseudo-real forecasting exercise is used 

to assess the adequacy of a specific model. 

 

Keywords: state space model, exponential smoothing model, periodic ARIMA model 

JEL Classification: C22, E32 

 

1 Introduction 

Time-varying with the seasons sample autocovariance function are refereed to periodic time 

series. Such class of models called periodic models were introduced firstly by Hannan (1955), 

while in Gladyshev (1961) the Periodically Correlated time series with period T (PC(T) in 

short) ware defined and examined. For theory and applications for PC(T) time series see to 

Hurd and Miamee (2007). There are a few alternative ways to consider periodic (or seasonal) 

in time dynamic of parameters in time series models. The most popular is the usual ARMA 

model with periodic coefficients (PARMA in short). This generalization assumes periodic in 

time coefficients in AR and MA part, with the same period. Under appropriate regularity 

conditions the PARMA model is PC. The PARMA models are well examined in time and 

frequency domain (see for example Wyłomańska (2008)). In the same way the PARIMA and 

Seasonal PARIMA models can be defined. The alternative and more sophisticated models 

with time-varying periodic parameters are known. The applications and theoretical 

background concerning models with time-varying parameters can be found in Pagano (1978), 

Osborn (1991), Franses and Paap (2004), Burridge and Taylor (2001) and many others. The 

seasonal volatility (or seasonal heteroscedasticity) ware considered by Trimbur and Bell (2012), 

Berument and Sahin (2010), Doshi et al. (2011), Lenart (2017), and many other studies. In 
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Novales and Fruto (1997) the authors consider performance of periodic models over non-

periodic models in forecasting. Extension of Unobserved Component Models to periodic case 

ware considered in Koopman and Oomos (2008), Proietti (2004) and many others. 

In this paper we consider the case of periodic coefficients in linear innovations state space 

model. The constant parameters were examined in details in Hyndman et al. (2008). Note that 

modeling with periodic coefficients is effective if appropriate models and estimations 

procedures are considered. Additionally, good in-sample fit is not equivalent with good 

forecasting power. We decide to extend this class of time series to periodic case since the 

components of exponential smoothing models (e.g. level component, trend component, 

seasonal component) has an natural interpretation. By assuming periodicity for parameters the 

extended natural interpretation is possible (for example seasonal conditional volatility). In the 

first part we examine the exponential smoothing models with periodic coefficients from 

theoretical point of view. We show the exact reduced PARIMA forms for chosen models. In 

empirical part, we would like to shed light on the forecasting problem with such class of time 

series. We use data concerning monthly price in education COICOP in Poland (Jan. 1997 to 

Dec. 2015).  

 

2 Reduced Form for the General Linear Innovations Model with periodic coefficient 

We consider the following general linear innovation model of the form:  
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where ty  is real-valued observed time series and tx  is the state vector, )(0, 2

tt IID  ~ . For 

the matrixes ω  and F  we assume that are constant. For matrix tg  we assume that contains 

element being an periodic functions with the same period 1>T . The periodicity of variance 

2

t  is also assumed. Hyndman et al. (2008) consider case with constant tg , 2

t  and proved 

that such model has reduced ARIMA form. In the next part we show that generalization to 

periodic case produce reduced periodic ARIMA model with period T , i.e. ARIMA model 

with time-varying periodic coefficients with period T . 

Based on the same steps as in Hyndman et al. (2008) (page 170, we drop the details) the 

general linear innovation model can be reduced to Periodic ARIMA model of the general form:  

 ],)[(=)( ttt LyL    (2) 
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where the autoregressive polynomial equals  

 )(det=)( LIL F  (3) 

and time-varying moving average polynomial equals  

 ),(det][)(adj'=)( LILLIL tt FgFω   (4) 

and 
ktt

k XXL =][  for any Ztk, . Note that the polynomial   depends on t . Hence, after 

this polynomial we put the argument in brackets ][ . To clarify, we consider the following 

local level model of the form  
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where )(0,NID 2

tt  ~  and t , t  are periodic with period T  (see Hyndman et al. 2008, 

page 40 in case of constant parameters). In such case, the elementary calculations give that 

].)[1)((1=)(1 1 ttt LyL    It means that this model has reduced PARIMA(0,1,1) model 

form with periodic variance of the white noise and equality restrictions on parameters. 

In the next section we consider more advanced models with periodic parameters. We 

consider damped level model with seasonal pattern; local additive seasonal model with 

damped level and trend pattern and finally double damped local trend model. The extension 

of known seasonal mQDPqdpARIMA ),,)(,,(  model with season m  to periodic case (with 

period T ) we denote by seasonal mQDPqdpPARIMA ),,)(,,(  with season m  and period T . 

Note that it is natural to consider mT = . 

 

2.1 Damped level model with seasonal pattern 

In this section we consider model with damped level pattern and seasonal pattern with 

periodic coefficients of the form  
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where m  is the length of the season for seasonal pattern and t , t , 2

t  are periodic 

functions at t  with the same period 1>T . Equivalently, above model can be written in form  
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To simplify this section we assume that 4== mT . But the general case is passible. In such 

specific case we have  ,= 321  tttttt sssslx   ,1000=' ω  
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Elementary calculations give that    LLLIL  11=)(det=)( 4
F  and  
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Hence (after calculations)   .=][)(adj' 1

4

4

5

55 LLLLLI ttttt   gFω  Finally  

       1.111=)( 1

4

4

5

55   LLLL ttttt   (10) 

 

Hence, the considered model is an seasonal PARIMA 41,0)(1,0,5)(0,  model with period 

4=T , periodic variance of the white noise and equality restrictions on parameters.  

 

2.2 Local additive seasonal model with damped level 

In this section we consider additive model with damped level, seasonal pattern, and trend 

pattern of the form  
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where we assume that t , t , t  and 2

t  are periodic functions at t  with period mT = . For 

4== mT  we have  ,=' 321  ttttttt ssssblx   ,10001=' ω  

 ,000=' tttt g   
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Note that   ).)(1)(1(1=1)(1=)(det=)( 445 LLLLLLLLIL  F  In addition,  

 
   

  ,

=][)(adj'

11

2

2

4

4

5

5555

6

66

LLL

LLLLI

tttt

ttttttt











gFω
 (13) 

which means that  

 
   

      ,1111

11=)(

11

2

2

4

4

5

5555

6

66









LLL

LLL

tttt

ttttttt




 (14) 

or equivalently 
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which means that the factor L1  is common in polynomials )(L  and )(Lt . Hence,  

 ),)(1(1=1=)( 445 LLLLLL tt    (16) 
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The considered model is an seasonal PARIMA 41,0)(1,0,5)(0,  model with period 4=T , 

periodic variance of the white noise and equality restrictions on parameters. 

 

2.3 Double damped local trend model 

Following by Hyndman et al. (2008), page 181 we consider  
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where t , t  and 2

t  are periodic functions at t  with period 0>T . We have  ,=' ttt blx  

 ,=' 21 ω   ,=' ttt g  

 ,
0

=
2

21













F                  .

10

1
=

2

21



















L

LL
LI F  (19) 

 



The 11th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

207 

Elementary calculations give that   .11=)(det=)( 21 LLLIL  F In addition,  

     1.1=)( 211211

2

221   LLL tttt   (20) 

It means that the considered model is PARMA (2,2)  model with period T , periodic variance 

of the white noise and equality restrictions on parameters. 

 

3 Forecasting experiment 

We consider monthly price in education in Poland (monthly rate of change, m-o-m, HICP 

(2015 = 100), source: Eurostat) form Jan. 1997 to Dec. 2015 (see Fig. 1). This price process is 

an important driver of inflation at September and October, where the peaks are observed (due 

to some administrative regulations). The seasonal pattern in obvious is such data (with period 

12), while the trend is clearly not observed. Therefore, we propose to apply damped level 

model with seasonal pattern (see Section 2.1). We consider 9 different specifications for this 

model. For time-varying parameters: t , t , t  we consider sequence of labels during one 

year (see details in Table 1). The same number at different months (for example 1 and 1 or 2 

and 2) means the same value of parameter. Different numbers (for example 1 and 2 or 1 and 2 

and 3) at months means that the values are different. For example, model M1 assumes 

constant parameters, while M3 assumes that t and t are constant and t has three values 

during year (labeled by: 1,2,3).  
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Fig. 1. Monthly rate of change for education COICOP (m-o-m percentage change, monthly 

data) from Jan. 1997 to Dec. 2015 (Poland). 
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    M1 M2 M3 M4 M5 M6 M7 M8 M9 

  January 1 1 1 1 1 1 1 1 1 

  February 1 1 1 1 1 1 1 1 1 

             

  July 1 1 1 1 1 1 1 1 1 

 t  August 1 1 1 1 1 1 1 1 1 

  September 1 1 1 1 1 2 2 2 2 

  October 1 1 1 1 1 2 3 2 3 

  November 1 1 1 1 1 1 1 1 1 

  December 1 1 1 1 1 1 1 1 1 

  January 1 1 1 1 1 1 1 1 1 

  February 1 1 1 1 1 1 1 1 1 

    

           July 1 1 1 1 1 1 1 1 1 

 t  August 1 1 1 1 1 1 1 1 1 

  September 1 2 2 1 1 1 1 2 2 

  October 1 2 3 1 1 1 1 2 3 

  November 1 1 1 1 1 1 1 1 1 

  December 1 1 1 1 1 1 1 1 1 

  January 1 1 1 1 1 1 1 1 1 

  February 1 1 1 1 1 1 1 1 1 

    

           July 1 1 1 1 1 1 1 1 1 

 t  August 1 1 1 1 1 1 1 1 1 

  September 1 1 1 2 2 1 1 2 2 

  October 1 1 1 2 3 1 1 2 3 

  November 1 1 1 1 1 1 1 1 1 

  December 1 1 1 1 1 1 1 1 1 

Table 1. Models parameters characteristics (under consideration). 

 

We divide our sample into two parts: a training and a forecasting period. For the 

estimation we use 13-year rolling window. We start the estimation using data set up to Dec. 

2009. After each new predictive distribution evaluation we add next observation and delete 
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last one. Therefore, the length of the sample is constant over time (n=168). Finally, we collect 

sixty predictive distributions for 12 month ahead. For nowcasting the average logarithmic 

score was calculated (see Fig. 2). To compare logarithmic score for different models we use 

the test proposed by Amisano and Giacomini (2007). At significance level 5% in group of 

first five models we cannot reject null hypothesis that the logarithmic scores are different 

(comparison by pairs). The same conclusion concerns group of models M6-M9. Finally, if we 

compare any model from group M1-M5 with any model from group M6-M9 then we reject 

null hypothesis assuming equal logarithmic score, against alternative hypothesis that chosen 

model from group M6-M9 has higher logarithmic score. Summing up, the models with time-

varying periodic in time variance of white noise improve forecasting performance over 

alternative models with constant variance of error term.  

 

M1 M2 M3 M4
M5

M6 M7 M8 M9

-2

-1,5

-1

-0,5
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0,5
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M1 M2 M3 M4 M5 M6 M7 M8 M9

 

Fig. 2. Average logarithmic score for different considered models based on sixty predictive 

distributions (nowcasting). 

 

Conclusions 

In this paper we show the exact form for the linear innovations model with time-varying 

periodic in time parameters. It is Periodic Autoregressive Integrated Moving Average form 

with equality restrictions on parameters. Specific models ware considered with level, trend 

and seasonal pattern. The real data example was considered with monthly time series 

concerning price in education in Poland. We consider problem of forecasting performance 

based on logarithmic score rule. Our main findings from real data example is that in such case 

models with periodic in time variance of error term outperforms the considered models with 

constant variance of error terms. In addition, from statistical point of view (at significant level 

5%) allowing seasonality only in smoothing parameters in level ( t ) and seasonal pattern ( t ) 

doesn’t produce better forecasting preference. Note that alternative model specifications 

should be considered and compared. Also the test proposed by Amisano and Giacomini 

(2007) should be adjust to the periodic case. 
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