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Abstract 

Novel tools offered by functional data analysis enable economists for enlarging a range of considered issues as 

well as for obtaining new insights into classical areas of empirical economic research. This paper presents 

a novel k–local functional median algorithm for functional data. Its statistical properties as well as its usefulness 

in analysis of real data set concerning air pollution monitoring in Malopolskie voivodeship in Poland in 2016 are 

shown. An implementation of the algorithm within a free R package DepthProc is indicated and its comparison 

with selected alternatives presented in the literature is performed.  
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1 Introduction  

Pollination in Malopolska is an extremely important social problem. It influences on the 

social costs (such as the average length and quality of life) and economic (e.g. medical 

expenses, loss of tourist values). Cluster analysis for functional data representing daily 

trajectories of concentrations of hazardous substances (including nitrogen oxides) allows for 

an optimization of the environmental policy of the region. 

 

2 K-local functional median algorithm 

Main aim of the paper is to propose a novel statistical method of conducting preliminary 

analysis of the problem of air pollution in Cracow. For this purpose, we used two clustering 

algorithms for functional data: k-means algorithm and k-local functional median algorithm. 

The k-local functional median algorithm is our original proposal, in which we used an idea of 

local depth proposed in Paindaveine and Van Bever (2013) for the modified band depth 

proposed by Lopez-Pintado and Romo (2006) and intensively studied in Nieto-Reyes and 

Battey (2016) . 

 
                                                           
1 Cracow University of Economics, ul. Rakowicka 27, 31-510 Kraków, e-mail: 

daniel.kosiorowski@uek.krakow.pl. 
2 Corresponding author: AGH University of Science and Technology, al. Mickiewicza 30,  

30-059 Kraków, e-mail: szlachto@agh.edu.pl. 
 



The 11th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

154 

2.1 Local depth 

Depths express centrality of objects with respect to samples or probability disstributions, see 

for example Nagy et. al. (2016). Depths describe global property of data cloud or the 

underlying distribution - a degree of outlyingness of a point from a center - the median. In 

many situations however local properties of data set are of prime importance. To these 

situations belong clustering issues, where multimodality of data set has to be stressed. In this 

context several local extensions of depths have been proposed. Our proposal base on one of 

them presented in Paindaveine and Van Bever (2013) for multivariate data case. For more 

examples on local depths we refer to Lopez-Pintado et. al. (2007). 

Let x1(t),...,xn(t) denotes a set of real functions, for simplicity let us assume that they 

belong to C[0,1] continuous functions defined on an interval [0,1]. A graph of a function x is 

a subset of 2 defined as 

 ( ) {( , ( )) : [0,1]} G x t t x t . (1) 

A band in 2  determined by k functions from a sample x1,...,xn is defined: 
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For any function x and set of functions {x1,...,xn} an index of j functions  
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2j  , expresses a fractions of bands 
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ji i ix x x  covering a graph of x. 

Definition 1: For functions x1,...,xn the band depth of a function f equals 
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In case, when X1,...,Xn are independent copies of stochastic process X, which generates 

x1,...,xn, population versions of depth indices are defined: 
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A function being a sample median with respect to a sample ,
ˆ

n Jm  is a curve which maximizes 

the sample depth: 

 
1

, ,
{ , , }

ˆ arg max ( ).
n

n J n J
x x x

m S x
 

  (7) 

In a population case as the median we take mJ in C[0,1] which maximize SJ(). 

Unfortunatelly there are great difficulties in applications of the above concept of functional 

depth in case of economic time series. Trajectories of economic objects are crossing for many 

times what makes the band depth rather useless. Lopez-Pintado and Romo (2006) proposed 

much better concept of functional depth for economic applications. For any function x from 

a sample {x1,...,xn}, 2j   let 
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denotes a set of points in the interval [0,1], for which a function x is inside a band determined 

by 
1 2
, , ,

ji i ix x x . 

If λ is the Lebesque’s measure on the interval [0,1], λ(Aj(x)) is a fraction of time, in which the 

function x is inside a band. 

Definition 2: A generalized band depth of a curve x is 
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A function being a sample median is defined as: 
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In a population case the median mJ maximizes SJ(ּ ) in C[0,1].  

For further generalization of the band depth and their theoretical properties see Nieto-

Reyes and Battey (2016). For any depth function D(x,P), the depth regions, 

2( ) { ([0, ]) : ( , ) }   R P x L T D x P are of paramount importance as they reveal very various 

characteristics of probability distribution P: location, scatter, dependency structure (clearly 

these regions are nested and inner regions contain larger depth). When defining local depth it 

will be more appropriate to index the family ( )R P  by means of probability contents. 

Consequently, for any (0,1]  we define the smallest depth region with P-probability equal 

or larger than β as 
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where A(β)={α≥0: P(Rα(P))≥β}. The depth regions ( )R P  or Rβ(P) provide neighborhoods of 

the deepest point only. However we can replace P by its symmetrized 

version 21 2 1 2  x x X
xP P P . Let D(ּ ,P) be a depth function. The corresponding sample 

local depth function at the locality level (0,1]  is LDβ(x,P(n))=D(x,Px
β(n)), where Px

β(n) 

denotes the empirical measure with those data points that belong to Rx
β(P(n)). Rx

β(P(n)) is the 

smallest sample depth region that contains at least a proportion β of the 2n random functions 

x1,...,xn,2x-x1,...,2x-xn. Depth is always well defined – its an affine invariance originates from 

original depth. Notice for β=1 we obtain global depth, while for β≈0 we obtain extreme 

localization. 

As in the population case, our sample local depth will require considering, for any 
2x L , 

the symmetrized distribution 
n

xP  which is empirical distribution associated with x1,...,xn,2x-

x1,...,2x-xn. Sample properties of the local versions of depths result from general findings 

presented in Paindaveine and Van Bever (2013). Implementations of local versions of several 

depths including projection depth, Student, simplicial, Lp depth, regression depth and 

modified band depth can be found in free R package DepthProc (see Kosiorowski and 

Zawadzki, 2014). For choosing the locality parameter β we recommend using cross validation 

related to an optimalization a certain merit criterion (the resolution being appropriate for 

comparing phenomena in terms of their aggregated local shape differences, which relies on 

our knowledge on the considered phenomena). 

 

2.2 K–local functional median algorithm – our proposal 

We first choose k, where k is user-specified parameter, namely, the number of cluster desired. 

The second parameter chosen by the researcher is the value of the parameter β (default value 

of β is 0.2). With the parameter β we may consider the issue at different levels, i.e. changing 

the value of the parameter β we can control the accuracy of the partition. Received values of 

local depth for all points are helpful in choosing the amount of clusters. 

We consider data whose proximity measure is depth. For our objective function, which 

measures the quality of a clustering, we use 
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where ,n iP  is empirical distribution of i-th cluster. 
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In first step we calculate the local depth for all points of the data set with respect to chosen 

values of parameters β and k. Then we are looking for k centroids c1,...,ck satisfying  
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(14) 

In the second step we create new clusters in such a way that for every point we count 2L  

distance from all centroids and assign the point to the closest centroid, that is, 

 
1 2( , ) max{ ( , ), ( , ), , ( , )},  kDist f P d f c d f c d f c  (15) 

where d denotes L2 distance. 

If there are two distances with the same values, then we assign a point to clusters with 

a lower number. In third step for the newly formed cluster we compute the functional local 

median with respect to the empirical distribution of the cluster. We repeat second and third 

steps, until centroids do not change or until only 1% of the points change clusters. Note, 

robustness of the clustering procedure may be evaluated using well known measures of 

clustering results quality (see Walesiak and Dudek, 2015). For example small changes of 

input data should lead to small changes of the silhouette plot characteristics in case of robust 

clustering procedure. More dilemmas of robust analysis of economic data streams can be 

found in Kosiorowski (2016).  

 

2.3 Trimmed k-local functional median algorithm  

The user chooses the parameter γ. We calculate a measure of degree of affiliation to cluster 

for each observation, i.e. d(f,cl(f))=d(f,c(1)) . We set obtained values descending 
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Then we reject a proportion γ of the observation of the highest values of measure of 

affiliation. For this method discriminant factors can be obtained for every observation 

(trimmed and non trimmed) in the data set (see Fitz et. al., 2015). The quality of the 

assignment decision of a non trimmed observation fi to the cluster j with d(f(i),cl(f(i))) can be 

evaluated by comparing its degree of affiliation with cluster j to the best second possible 

assignment. That is,  
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for fi not trimmed. Let f(1), … ,f(n) be the observations in the sample after being sorted 

according to their d(f(i),cl(f(i))) values. It is not difficult to see that f(1), …, f(┌γn┐) are the 

trimmed observations which are not assigned to any cluster. Nevertheless, it is possible to 

compute the degree of affiliation d(f(i),cl(f(i))) of a trimmed observation fi to its nearest cluster. 

Thus, the quality of the trimming decision on this observation can be evaluated by comparing 

( ) ( ))( , )i f id f cl  to 
 ( 1)

( 1)
,

n
n l f

d f c
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 
 

 with ( 1)n
f

    being the non-trimmed observation with 

smallest value of d(.,cl(.)). That is 
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for fi trimmed. Hence, discriminant factors DF(fi) are obtained for every observation in the 

data set, whether trimmed or not. Observations with small DF(fi) values (that is, values close 

to zero) indicate doubtful assignments or trimming decisions. Further properties and 

theoretical properties of the proposals may be found in Kosiorowski et. al. (2017). 

 

3 Air pollution in Cracow 

Air pollution is a very important problem in Malopolska. We use clustering algorithms for 

functional data to analyze air pollution in Cracow. We choose air quality data in the period 

from 1 to 31 December 2016 in Cracow, station Avenue Krasinski. All the considered data 

was taken from Malopolskie, System monitoringu jakosci powietrza 

http://monitoring.krakow.pios.gov.pl/ In the study we used the techniques used in functional 

data analysis. For more details we refer to Horvath and Kokoszka (2012), Ramsay et. al. 

(2009). We used the following packages fda.usc (see Febrero-Bande and de la Fuente, 2012) 

and DepthProc (see Kosiorowski and Zawadzki, 2014).  

We observe that the biggest concentration of PM10 occurs in the afternoon, between the 

hours of 3 p.m. and 8 p.m. In contrast, the height of the concentration of nitrogen dioxide is 

more varied. It depends not only on time, but also depends on the day of the week.  

First, the analysis was conducted for nitrogen dioxide pollution by using k-means 

algorithm. If we divide the observations into three clusters by k-means algorithm, then first 

cluster includes 1, 2, 6, 8, 9, 14, 15, 19, 22, 23, 29 December. Second cluster includes 3, 10, 

11, 18, 24, 25, 26, 27, 28 December. Third cluster includes 4, 5, 7, 12, 13, 16, 17, 20, 21, 30, 

31 December. In the second cluster there are weekends, holidays and the period after 

Christmas. Examining the first and third cluster it is difficult to find a relationship between 
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the days of the week and the amount of pollination. It is worth noting that in the k-means 

algorithm, an important step is the selection of centroid. For parameter k=5 at subsequent 

iterations sometimes we get empty fifth cluster. The greatest concentration of suspended dust 

was 5, 17, 30 and 31 December, just before New Year's Eve. From the recorded data difficult 

to see the correctness, in which days of the week is the greatest concentration of dust. 

However, the lowest concentration is in the Christmas period, i.e. 23-29 of December. 

 

 

Fig. 1. The amount of nitrogen dioxide and suspended dust particles emitted into the 

atmosphere as air pollution in Cracow, December 2016. 

 

 

 

Fig. 2. Functional means for individual clusters and assigning groups for nitrogen dioxide 

pollution emitted into the atmosphere as air pollution in Cracow, December 2016.  

Method – functional k-means algorithm, k=3. 
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Fig. 3. Functional means for individual clusters and assigning groups for particulate matter 

pollution in Cracow, December 2016. Method – functional k-means algorithm, k=3. 

  

In the next step of the analysis of concentrations of hazardous substances we used the k-

local functional median. By changing input parameter k, we received the optimum division 

into two clusters. If we divide the observations into three clusters by k-local functional means 

algorithm, then first cluster includes 1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 

23, 29, 30, 31 December. Second cluster includes 2, 10, 11, 18, 24, 25, 26, 27, 28 December. 

As in previous analysis in the second cluster there are weekends, holidays and the period after 

Christmas. While analyzing the concentration of particulate matter we obtained two clusters. 

First cluster includes 1, 2, 3, 9, 10, 11, 12, 15, 24, 25, 26, 27, 28, 29 December. The greatest 

concentration of particulate matter occurred in the period before the Christmas, as well as just 

before New Year's Eve. 

 

Conclusions 

In our study we faced an issue of missing data. The missing data may arise through equipment 

failure. They were supplemented by using the median of the observed cases on the variable in 

each hour. The next issue was to compare the results obtained with two clustering algorithms. 

They were very similar. However, because of the computational complexity of the local 

functional median calculation our algorithm randomly selects a sample, for which it 

determines centroids. Generating several times the algorithm helps us to verify the choice of 

number of clusters by comparing the received groups and variation in these groups. 

In summary we obtain that the smallest concentration of nitrogen dioxide occurred on 

holidays (i.e. the first group). The largest concentration on weekdays (i.e. the second group). 

Just before Christmas, during the departure of the holidays nitrogen dioxide concentration 
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remained at a medium level. Therefore it can be hypothesized that the concentration of 

nitrogen dioxide depends on the volume of traffic on the road. For example knowledge of the 

phenomenon of variability of air pollution can help in the environmental policy of the city, in 

the planning of free communication or traffic restrictions. 

 

 

Fig. 4. Functional medians for individual clusters and assigning groups for nitrogen dioxide 

pollution emitted into the atmosphere as air pollution in Cracow, December 2016.  

Method – k-local functional median algorithm, k=2. 

 

 

Fig. 5. Functional medians for individual clusters and assigning groups for particulate matter 

pollution in Cracow, December 2016. Method – k-local functional median algorithm, k=3. 
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