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Abstract 

Quantiles of income distributions are often applied to the estimation of various inequality and poverty 

characteristics. The most popular synthetic inequality measures, including the Gini and Pietra indices, are based 

on the Lorenz curve, but also simple quantile ratios or quantile dispersion ratios can be utilized to compare 

incomes of different population groups. Some other measures of income inequality have been constructed using 

differences (or ratios) between population and income quantiles. The concentration curve and corresponding 

synthetic concentration coefficient proposed by Zenga, are also defined in terms of quantiles. In the paper, 

selected inequality measures based on deciles and quintiles are considered. The main objective was to compare 

statistical properties of different estimation methods for quantiles, including Bernstein and Huang –Brill 

estimators, with the classical quantile estimator based on a relevant order statistic. Several Monte Carlo 

experiments have been conducted to assess biases and mean squared errors of quantile estimators for different 

sample sizes under the lognormal or Dagum distributions assumed as a population model. The results of the 

experiments have been used to the estimation of inequality measures in Poland. 
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1 Introduction  

The early development of statistical tools for income inequality measurement dates back to 

the end of the XIXth century, when the works of Vilfredo Pareto came out, but the literature 

on the evaluation and measurement of economic inequality has remarkably grown over the 

last few decades. For a long time income inequality measures have been used mainly for 

descriptive purposes. Rapid development of sample surveys after the second world war, as 

well as the growing demand for high-quality estimates at low levels of aggregation, made it 

necessary to study the sampling properties of inequality measures. Nevertheless, in many 

applications the estimates of inequality measures are still presented without any information 

about their precision, which must be the basis for further statistical inference e.g. statistical 

hypothesis testing and interval estimation. The problem can be neglected to some extent when 
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we consider the overall population or the sample size is large enough to apply the asymptotic 

theory; one should be conscious however, that for heavy-tailed income distributions the 

sufficient sample size can be very large indeed. For some population divisions (by age, 

occupation, family type or geographical area) estimators of inequality measures can be 

seriously biased and their standard errors can be far beyond the values that can be accepted by 

social policy-makers for making reliable policy decisions (Jędrzejczak, 2012). The situation 

seems even more complicated for nonlinear sample statistics including numerous inequality 

indices based on quantiles.  

The paper addresses the problem of statistical properties of the estimators of popular 

inequality measures based on quantiles. After a brief description of such measures (section 2), 

selected quantile estimators have been introduced (section 3). The next section comprises the 

results of Monte Carlo experiments which have been conducted to assess biases and mean 

squared errors of quantile estimators and their functions. In the last part of the paper we 

present the application of quantile-based inequality indices to the Polish Household Budget 

Survey (HBS) data.  

 

2 Statistical inequality measures based on quantiles 

Distribution quantiles of a random variable X which is identified as a household or personal 

income, or the estimators of these quantiles, have been applied to the construction of simple 

inequality indices as quintile dispersion ratio and decile dispersion ratio (Panek, 2011). 

 The quintile dispersion ratio has the following form: 
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where 8.0Q , 2.0Q  are quintiles, respectively, the fourth and the first.  

 The quintile dispersion ratio can also be defined as the ratio of the sum of incomes of the 

richest 20 percent of the population to the sum of incomes of the poorest 20 percent: 
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where jGK  is j-th quintile group. 

 The measure (2) can be interpreted as the ratio of the average income of the richest 

20 percent of the population to the average income of the poorest 20 percent of the population 

and it is usually calculated on the basis of equivalised income.  
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 Similar ratios can also be calculated for other quantiles, for instance deciles or percentiles 

(95th and 5th) of income distributions. Using the first and ninth decile we can obtain the 

following decile dispersion ratio: 
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where 9.0Q , 1.0Q  are deciles, respectively, the ninth and the first 

and 
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where 
jGD  is j-th decile group. 

 The reciprocal of the decile dispersion ratio defined by (4) takes values from the interval 

[0,1] and is called the dispersion index for the end portions of the distribution: 
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If the index 10:1K  is closer to the 1, the inequality is lower (mean incomes in the extremal 

decile groups are the same). 

 The examples of more sophisticated inequality measures are Gini and Zenga indices. The 

popular Gini index is not considered in this paper. The synthetic Zenga index is based on the 

concentration curve that can be considered point concentration measure, and thus becomes 

sensitive to changes at every “point” of income distribution. The Zenga point measure of 

inequality is based on the relation between income and population quantiles (Zenga, 1990; 

Greselin et al. 2012): 
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where )(1 pFxp
  denotes the population p-quantile and )(1* pQxp

  is the corresponding 

income quantile. Therefore the Zenga approach consists of comparing the abscissas at which 

F(x) and Q(x) take the same value p. 

Zenga synthetic inequality index is defined as simple arithmetic mean of point 

concentration measures 1,0,Z pp . 
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3 Selected quantile estimators  

Let X be a continuous random variable with distribution function F and let  pFQp
1  be 

the p-quantile of the random variable X, where  .1,0p  If F is continuous and strictly 

increasing distribution function, the pth quantile always exists and is uniquely determined. 

 The well-known estimator of the quantile pQ  is the statistic: 

  ,)(:inf)(ˆ 1 pxFxpFQ nnp  
 (7) 

where  xFn  is empirical distribution obtaining on the basis of a n-element random sample 

....,,, 21 nXXX   

 The problem of quantile estimation has a very long history. In the subject literature 

numerous nonparametric (distribution-free) quantile estimators have been presented. Their 

particular expressions depend on the underlying empirical distribution function definition. 
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where 
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kX  is an order statistic of rank k. 

 Among other estimators of quantiles pQ , we can mention the standard estimator, Huang-

Brill estimator, Harrel-Davis estimator and Bernstein estimator, to name only a few (Huang 

and Brill, 1999; Harrell and Davis, 1982; Zieliński, 2006). 

 By means of the empirical distribution level crossing, which has the following form: 
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we obtain the Huang-Brill estimator of the pth quantile pQ : 
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where  
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It can easily be noticed that for 5.0p  the estimator of the quantile 
5.0Q  is the order statistic 
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 Another interesting quantile estimator is the Bernstein estimator given by: 
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More examples of quantile estimators can be found in the papers of Pekasiewicz (2015) and 

Zieliński (2006). 

 

4 Analysis of Monte Carlo experiments 

The main objective of the Monto Carlo experiments conducted in the study was to assess the 

properties of selected estimators of quantiles. We were especially interested in their biases 

and sampling variances, the components of their sampling errors. The following estimators 

have been taken into consideration: the classical quantile estimator (8), Huang-Brill estimator 

(10) and Bernstein estimator (12). The estimators presenting the best performance were 

further applied to evaluate the quantile-based inequality measures for income distributions in 

Poland.  

In the experiments two different probability distributions were utilized as population 

models: two-parameter lognormal distribution, ),( LG , defined by the following density 

function: 
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and three-parameter Dagum distribution ),,( bapD , known also as the Burr type-III 

distribution, with the density function of the form (Kleiber and Kotz, 2003): 
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The sets of parameters of both theoretical distributions were established on the basis of 

real income data coming from Polish HBS and administrative registers, comprising large 

variety of subpopulations differing in the level of income inequality, which have been 
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observed over the last two decades. The sample sizes were fixed for each variant as n=500; 

n=1000, n=2000. The number of repetitions of Monte Carlo experiment was N=20 000 

(Białek, 2013). The simulated sample spaces were used to assess, for each estimator, its 

empirical bias and standard error.  

  

Distribution p 
pQ̂  

HB

pQ̂  
Brs

pQ̂  

BIAS RMSE BIAS RMSE BIAS RMSE 

).,.( 6008LG  0.1 -0.087 3.240 0.254 3.248 0.132 3.165 

0.2 -0.079 2.718 0.139 2.726 0.108 2.669 

0.3 -0.039 2.504 0.133 2.511 0.095 2.481 

0.7 0.089 2.528 -0.082 2.521 0.042 2.469 

0.8 -0.077 2.712 -0.077 2.712 0.047 2.680 

0.9 -0.131 3.245 -0.131 3.245 0.041 3.169 

).,.( 8038LG  0.1 -0.097 4.350 0.359 4.373 0.302 4.220 

0.2 -0.088 3.581 0.195 3.592 0.177 3.571 

0.3 -0.057 3.336 0.176 3.346 0.134 3.271 

0.7 0.169 3.338 -0.061 3.324 0.108 3.280 

0.8 -0.099 3.620 -0.099 3.620 0.070 3.510 

0.9 -0.116 4.339 -0.116 4.339 0.089 4.208 

D(0.7,3.6,3800) 0.1 -0.182 3.923 0.313 3.916 0.086 3.803 

0.2 -0.068 2.800 0.141 2.776 0.069 2.741 

0.3 -0.105 2.349 0.114 2.346 0.000 2.303 

0.7 0.010 2.054 -0.080 2.049 0.043 2.013 

0.8 -0.085 2.298 -0.078 2.287 0.032 2.256 

0.9 -0.083 2.984 0.116 2.991 0.121 2.915 

D(0.7,2.8,3800) 0.1 -0.156 5.073 0.368 5.069 0.221 4.493 

0.2 -0.112 3.580 0.232 3.589 0.082 3.509 

0.3 -0.080 3.015 0.144 2.991 0.062 2.958 

0.7 0.137 2.652 -0.063 2.681 0.073 2.599 

0.8 -0.084 2.956 -0.077 2.935 0.069 2.900 

0.9 -0.133 3.846 -0.112 3.848 0.147 3.774 

Table 1. Properties of selected quantile estimators for sample sizes n=1000. 
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Table 1 presents the results of the calculations for three quantile estimators: classical, 

Huang-Brill, and Bernstein, each of the following orders: p=0.1; 0.2; 0.3; 0.7; 0.8; 0.9. In 

particular, the table shows the relative biases and relative root mean squared errors (in %) of 

these estimators obtained for predefined population models- lognormal and Dagum - differing 

across the experiments in the overall inequality levels. The similar experiments for Gini and 

Zenga ratios were reported in Jędrzejczak (2015).  

Analysing the results of the calculations it becomes obvious that the Bernstein estimator 

performs better than its competitors- its root mean squared errors (RMSE) are much smaller 

than those observed for the other quantile estimators and its relative biases (BIAS) are also 

smaller, especially when the quantiles of higher orders are taken into regard. The bias and 

RMSE of Huang-Brill estimator are similar to the respective values for the classical quantile 

estimator. It is worth noting that for all cases biases are rather negligible so the total errors are 

dominated by sampling variances. In general, the estimation errors are higher for extremal 

quantile orders, for the heavy-tailed Dagum model and they also tend to increase as income 

inequality increases. The three types of quantile estimators mentioned above were then used 

to the simulation study concerning income inequality measures: )1(

10:10W  and 
)1(

20:20W  given by the 

formulas (1) and (3). The properties of decile dispersion ratios have been demonstrated in 

table 2. The results obtained for quintile dispersion ratios show similar regularities.  

 

Distribution 

(1)

10:10W  (stand.) (1)

10:10W  (Huang-Brill) (1)

10:10W  (Bernstein) 

BIAS RMSE BIAS RMSE BIAS RMSE 

).,.( 6008LG  0.065 4.327 -0.324 4.304 0.017 4.191 

)7.0,1.8(LG  0.084 5.088 -0.273 5.028 0.019 4.926 

)8.0,3.8(LG  0.124 5.815 -0.352 5.766 0.037 5.615 

D(0.7, 3.6, 3800) 0.162 4.702 -0.211 4.651 0.082 4.543 

D(0.8, 3.0, 3200) 0.097 5.179 -0.266 5.193 0.039 5.009 

D(0.7, 2.8, 3800) 0.181 6.003 -0.298 5.948 0.066 5.800 

Table 2. Properties of Decile Dispersion Ratio based on quantile estimators for n=1000. 

 

5 Application  

The inequality measures based on deciles and quintiles, as well as the Zenga indices, have 

been applied to the inequality analysis in Poland by macroregion (NUTS1), based on HBS 

sample 2014. To obtain the reliable estimates of these coefficients we used the Bernstein 
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quantile estimator which turned out to have the highest precision (tables 1 and 2). Basic 

characteristics of the HBS sample, divided by macroregions, are presented in table 3, while 

table 4 contains the results of the approximation of the empirical distributions by means of the 

Dagum model. We can observe very high consistency of the empirical distributions with the 

theoretical ones (see table 4 and figures 1 – 2). 

 

Macroregion 
Number of 

households 
Minimum Maximum Average 

Standard 

Deviation 

I 8046 11.00 155017.49 4240.21 3790.53 

II 7433 12.50   37152.00 3634.03 2179.59 

III 6246 10.00   84032.90 3461.45 2876.23 

IV 5658  3.00   43493.45 3772.15 2611.00 

V 3971  1.67   37200.00 3591.07 2337.83 

VI 5575  9.00  126739.54 3646.44 3225.72 

Total 36929 1.67 155017.49 3755.33 2959.95 

Table 3. Numerical characteristics of income in macroregions. 

 

 

Fig. 1. Income distributions for macroregions I and fitting by means of the Dagum model. 

 

 

Fig. 2. Income distributions for macroregions IV and fitting by means of the Dagum model. 
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Macroregion 
Dagum distribution parameters 

           p                            a                           b 

Overlap 

measure 

I 0.790 2.804 3839.630 0.982 

II 0.669 3.618 3800.167 0.970 

III 0.756 3.051 3286.467 0.971 

IV 0.743 3.233 3687.076 0.964 

V 0.722 3.301 3587.800 0.970 

VI 0.718 3.158 3544.934 0.979 

Total 0.747 3.125 3611.017 0.975 

Table 4. Approximation of income distributions for macroregions. 

 

The basic results of inequality analysis have been outlined in table 5. The estimated values 

of quintile and decile share ratios, as well as the values of synthetic Zenga inequality indices, 

indicate the central macroregion (I) as the one with the highest income inequality level. It is 

particularly evident for extremal income groups, i.e. income of the richest 10 percent of 

households is 12 times bigger than the income of the poorest 10 percent. The southern 

macroregion (II) presents the lowest values of all inequality measures except for the K index.  

 

 Macroregion 
(1)

20:20W  (2)

20:20W  (1)

10:10W  (2)

10:10W  10:1K  Zenga 

I 3.049 6.939 5.494 12.085 0.083 0.386 

II 2.595 4.962 4.283 7.577 0.132 0.269 

III 2.904 6.147 4.927 9.908 0.101 0.348 

IV 2.750 5.577 4.742 8.614 0.116 0.308 

V 2.789 5.375 4.536 8.172 0.122 0.295 

VI 2.828 6.039 4.814 9.841 0.102 0.347 

Total 2.819 5.916 4.843 9.526 0.105 0.338 

Table 5. Inequality measures for macroregions. 

 

Conclusion 

Analysis of income and wage distribution is strictly connected with the estimation of 

inequality and poverty measures based on quantiles. Therefore, for income data coming 

usually from sample surveys it becomes crucial to use the quantile estimators presenting 

satisfying statistical properties. In the paper, the Huang-Brill and Bernstein estimators have 
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been proposed and analysed from the point of view of their sampling errors under several 

income distribution models. In the simulations studies the properties of these estimators have 

been compared with the classical one which is most often applied in practice. The results of 

the calculations reveal that the Bernstein estimator performs better than its competitors- its 

root mean squared errors (RMSE) are much smaller than those observed for the other quantile 

estimators and its relative biases (BIAS) are also smaller, especially when the quantiles of 

higher orders are taken into regard. Consequently, the Bernstein estimator has been applied to 

the estimation of various inequality measures in regions NUTS 1 in Poland.  
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