
The 10th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

102 

Spectral VaR test statistical properties 

Marta Małecka1 

 

Abstract 

Developed primarily to describe physical phenomena like the vibrating string or heat flow, the spectral theory 

offers powerful tools applicable also in economics as means of statistical signal processing. The power spectrum, 

obtained from the time series as a Fourier transform of the autocovariance function, gives detailed information 

about the time structure of the process. The information content of the power spectrum is the same as the 

autocovariance, however these functions expose different aspects of the correlation structure of the time series. It 

has been shown that the spectral analysis may reveal hidden periodicities in the studied data. Thus for practical 

purposes the spectrum might be the more useful parameter than the autocovariance function itself.  

Since the key issue in VaR model evaluation is to check for time dependence in the residual VaR failure series, 

the backtesting procedure may be based on the power spectrum instead of the autocovariance function. The study 

investigated statistical properties of the spectral VaR tests. The test evaluation was based on the Monte Carlo 

experiments designed in such a way that they reflect the volatility clustering phenomenon. The study showed that 

spectral VaR tests outperform the commonly used Markov test in detecting incorrect risk models. 
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1. Introduction 

The development of the spectral theory was primarily motivated by studies of physical 

phenomena like the vibrating string or heat flow2. The underlying idea was to transform the 

observed signal from the time domain to the frequency domain to obtain information about the 

periodical structure of the process. The basic tool of signal processing in the spectral theory is 

the Fourier transform, by which the harmonic functions of sine and cosine are multiplied by the 

signal output and the resulting integration returns frequency information about the underling 

physical process. Through the decomposition into a linear combination of sines and cosines, it 

is estimated, from a finite record of a stationary data sequence, how the total power of the 

process is distributed over frequency. The transform does not generate any information loss, 

which means that the initial autocorrelation function can be reconstructed by the inverse Fourier 

transform.  

                                                           
1 University of Łodz, Department of Statistical Methods, Rewolucji 1905 r. 41/43, 90-214 Łódź, 

Poland, e-mail: marta.malecka@uni.lodz.pl.  
2 An in-depth introduction to the Fourier analysis can be found in Stein and Shakarchi (2003). 
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The Fourier transform processes the function, changing its domain, in a way that exposes 

periodical properties. Therefore, although there is a one-to-one correspondence in the 

information content between the Fourier pair consisting of the explicit autocorrelation function 

and the power spectrum, they differ in a way the information is displayed3. Thus the power 

spectrum may be the more useful parameter than the autocorrelation function in practical 

applications. Especially it may constitute an attractive base for statistical test construction, 

offering possible power gains. 

In VaR model evaluation the key issue, which determines specific backtesting procedures, 

is to check for independence in the residual series. It is required from a VaR-based risk model 

that the information contained in the base process is fully used, hence the residuals, which form 

a residual VaR failure series, do not exhibit any form of time dependence. The standard 

approach to capture time series dependence in subsequent VaR failures concentrates on testing 

the Markov property (Christoffersen, 1998). The extensive toolkit of VaR evaluation4 involves 

also estimating sample autocorrelations (e.g. in a well-known Ljung Box test), regressing VaR 

violations on their lagged values (Engle and Manganelli, 2004) or checking unpredictability of 

the durations between failures (Christoffersen and Pelletier, 2004). Another method for testing 

dependence in time series is to examine the shape of the spectral density function (Berkowitz 

et al., 2011). The spectral VaR test utilize the property that in the case of a white noise the series 

has a particularly simple representation of a flat line in a frequency domain. 

The aim of the study was to assess the performance of spectral methods in VaR model 

evaluation. Spectral VaR tests were examined through their basic statistical properties – the size 

and the power. The study involved test assessment in relation to the standard Markov-chain-

based procedure and the comparative analysis of various testing statistics proposed within the 

spectral test framework. The statistical properties were investigated through the Monte Carlo 

method with simulation experiments based on the GARCH process, which guaranteed 

representation of the volatility clustering phenomenon. 

The second section of the paper introduces spectral-based methods of testing independence 

in statistical time series and presents possible testing statistics. In the third section we report the 

                                                           
3 A in-depth introduction to the spectral theory can be found in Koopmans (1995) and broad 

discussion on its application to statistical signal processing is presented in Stoica and Moses 

(2005). In Polish literature the application of spectral methods in econometrics was studied by 

Talaga and Zieliński (1986). 
4 For an overview of VaR theory see e.g. Christoffersen (2012). The comparative study of the 

basic VaR tests can be found in Małecka (2013). 



The 10th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

104 

results of a detailed Monte Carlo study and discuss spectral VaR test performance in terms of 

their size and power in finite sample setting. The final section summarizes and concludes. 

 

2. Spectral-density-based VaR tests 

Let us define the VaR failure process: 

 ( )1
t p tt { x VaR x }I    (1) 

where tx  represents the output of the statistical signal, interpreted usually as the return from 

investment5 at time t  and ( )p tVaR x  is the value at risk of tx  at time t  1t T  , on the level 

of tolerance p  (0 1)p  . Let us consider the hypothesis that the process 
0( )T

t tI 
 is the 

martingale difference sequence 0 1( )t tH E I p      where t  is the information set available 

at time t  and (0 1)p   is the fixed tolerance level.  

The Markov test statistic, used here as a benchmark, is formulated in terms of conditional 

probabilities of a single-step transition: 
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ijt   number of transitions form the state i  to the state j , where state 0 is 

a non-exception and state 1 is an exception. 

The spectral test refer to the properties of the autocorrelation and autocovariance function. 

The null in the above form implies that the autocorrelation function ( )I k  and the 

autocovariance function ( )I k  of the random variable tI  equal zero for all lag orders k , k Z  

(Berkowitz et al., 2011). The spectral test works on the idea of comparing the spectral density 

function If   which is the Fourier transform of the autocovariance function ( )I k : 
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to the theoretical spectral density of the martingale difference process, which, under 0H   has 

a particularly simple shape of a flat function:  

                                                           
5 Various possibilities to construct the rate of return and average return in both discrete and 

continuous time are discussed in Białek (2013). 
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The periodogram estimate of the spectral density is given by: 
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(5) 

The distance between the estimated spectral density and the theoretical flat line is measured 

by the expression: 
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(6) 

The above formula represents a random function, hence it cannot be used directly as a test 

statistic. This function does not exhibit point convergence. Under 0H  the cumulated function 

converges to zero, which allows for measuring the discrepancy6 between the observed series 

and the 0H  by the function:  
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The test statistic is based on the modification of the formula (7): 
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(8) 

in which   is converted to t   [0,1]t , the multiplication by 2  is used to facilitate 

computation of the asymptotic distribution7 and the normalization factor
(0)I

T


 is introduced. 

That gives the formula being the function of the sample autocorrelation normalized by T . In 

opposite to the expression (7), the modified statistic is robust against heteroskedasticity 

(Durlauf, 1991).  

Under 0H  it holds that ( ) ( )d

TU t B t   [0 1]t   where ( )B t  is the Brownian bridge on 

[0 1] 8. Using the above convergence the martingale property test can be conducted through 

a number of test statistics, which map the random function ( )TU t  into the random variable. The 

                                                           
6 More about measures of discrepancy and their statistical properties can be found in Żądło (2013). 
7The proof can be found in Durlauf (1991). 
8The Brownian bridge is the Wiener process conditional on (1) 0W   therefore 

( ) ( ) (1) 0 [0 1]B t W t {W } t        
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following statistics are proposed: Anderson-Darling statistic 
2

1

0

( )

(1 )
AD

U t
SD

t t
 

  Cramer von 

Mises statistic 
1

2

0
( )CVMSD U t   Kolmogorov-Smirnov statistic 

[0 1]

sup ( )KS
t

SD U t
 

    and 

Kuiper statistic 
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     (Durlauf, 1991). 

 

3. Simulation study 

Statistical properties of test statistics based on spectral density function and the indLR  statistic 

of the Christoffersen’s Markov test, used as a benchmark VaR test, were compared through the 

simulation study. The size and the power were estimated as the proportion of rejections under 

the null (type-one errors) and the proportion of rejections under the alternative respectively. 

The size assessment was done through generating i.i.d. Bernoulli samples with the probability 

0.05p  , equal to the chosen VaR tolerance level.  

 

Test 
Series length 

250 500 750 1000 

indLR  0.071 0.083 0.122 0.137 

KSSD  0.028 0.029 0.033 0.032 

KuiSD  0.028 0.031 0.033 0.035 

CVMSD  0.040 0.039 0.042 0.043 

ADSD  0.046 0.047 0.047 0.049 

Table 1. Size estimates of the spectral VaR tests. 

 

For the power comparison we adopted the Monte Carlo simulation technique, where we 

replaced the theoretical distribution of the test statistics by their sample analogues simulated 

under the null (Dufour, 2006). The test performance was assessed through the experiment with 

conditionally heteroscedastic return data obtained from the GARCH model9, which reflects 

practical market conditions characterized by the volatility clustering phenomenon. VaR 

                                                           
9 The power evaluation experiment used the GARCH-normal model with variance equation of 

the form 2

1 1t t th h       with parameter values 0.000001  , 0.85   and   

parameter value on a relevant level to ensure the required value of   (Drachal, 2015; Fiszeder, 

2009; Małecka, 2011). 
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forecasts were set to the level of the 0.05 quantile of the unconditional distribution of the return 

process. The strength of the correlation in VaR failure series was assessed by the correlation 

coefficient of the squared returns  , whose value was set to 0.1, 0.3 and 0.5 in subsequent 

variants of the simulation experiment. The size and power estimates were computed over 10,000 

replications for sample sizes 250 500 750 1000T      with the level of significance set to 5%. 

Rejection rates obtained under the null for all considered test statistics – indLR , KSSD , KuiSD , 

CVMSD , ADSD  – showed that the empirical size of the Markov indLR  test was much further from 

the nominal test size than the size results obtained for spectral tests (Table 1). Moreover the 

null distribution of the indLR  test statistic did not show convergence to the theoretical 

distribution, which translated into test size of over 10% for series of 750 observations or more. 

Empirical size for spectral tests was closer to the nominal 5% level, with best results fitting into 

the interval between 4.5% and 5% independent of the sample size.  

In the group of spectral tests the estimated test size was generally below the nominal 5%, 

which indicated the conservative character of the tests. The largest compliance between the 

empirical and asymptotic distribution was observed in the case of the ADSD  test, based on 

Anderson-Darling statistic. 

The results of the power comparison based on the GARCH experiment did not show clear 

superiority of any of the approaches. Spectral tests exhibited more power in detecting low-scale 

correlation ( 0.1  ) in time series, while in the case of the evident correlation ( 0.3   and 

0.5  ) they were outperformed by the indLR  test statistic. 

The study showed fast growth in the test power with lengthening the time series, especially 

with shift from 250 to 500 observations. For 500 observations and correlation characterized by 

0 3    or 0 5    the estimated power exceeded 40% in the case of all tests, while for 1,000 

observations it got over 70% in most cases. The comparative analysis of the power estimates of 

the four considered spectral test statistics showed the superiority of the ADSD  test, which also 

outperformed other tests in the size exercise.  

 

Test   
Series length 

250 500 750 1000 

indLR  

0.1 0.10 0.13 0.17 0.19 

0.3 0.36 0.59 0.76 0.86 

0.5 0.64 0.89 0.97 0.99 
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KSSD  

0.1 0.12 0.20 0.25 0.28  

0.3 0.23 0.46 0.59 0.76  

0.5 0.23 0.54 0.71 0.84  

KuiSD  

0.1 0.11 0.17 0.21 0.23  

0.3 0.22 0.43 0.57 0.69  

0.5 0.23 0.51 0.72 0.84  

CVMSD  

0.1 0.13 0.18 0.21 0.25  

0.3 0.25 0.43 0.55 0.71  

0.5 0.26 0.53 0.68 0.82  

ADSD  

0.1 0.13 0.25 0.30 0.34  

0.3 0.28 0.58 0.72 0.84  

0.5 0.30 0.67 0.81 0.91  

Table 2. Power estimates of the spectral VaR tests. 

 

4. Conclusion 

The study explored application of the spectral theory to risk analysis based on the VaR model. 

Spectral-based approach was adopted in risk model evaluation to test for correlation in the VaR 

failure series. The paper presented principles of the spectral test construction which utilized the 

flat shape of the theoretical spectral density of the white noise process.  

Assessment of test properties through the Monte Carlo method showed spectral-based 

approach superiority in terms of the test size. The empirical size of the standard Markov-based 

VaR test was much further from the nominal test size than the size results obtained for spectral 

tests. The power exercise indicated that spectral tests are superior in detecting low-scale 

correlation in time series, while in the case of the evident correlation they were outperformed 

by the Markov-based test statistic. Among spectral tests the Anderson-Darling statistic 

outperformed other statistics both in terms of the size and the power. 
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