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Abstract 

Catastrophic events affect various regions of the world with increasing frequency and intensity. Large 

catastrophic events can be caused by natural phenomena or are caused by man. Serious events in recent years are 

often the result of terrorist acts. Catastrophe modelling is a risk management tool that uses specific methods and 

computer technology to help insurers, reinsurers and risk managers better assess the potential losses caused by 

natural and man-made catastrophes.  

 This article describes and applies the parametric curve-fitting methods for modelling historical insured 

catastrophe losses. Article provides theoretical description of the Excess over Threshold Method (EOT) and 

presents its application to the data about insured catastrophe losses in the world in period 1970-2014, published 

in No 2/2015 Swiss Re study Sigma.  

 The modelling using the EOT method follows the assumptions and conclusions in a generalized Pareto 

family with unknown parameters. Consequently application part of the article comprises the results of fitted 

insured catastrophe losses by generalized Pareto distribution using the maximum likelihood method for 

parameters estimation to the data above a high threshold. 
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1. Introduction  

The enormous impact of catastrophic events on our society is deep and long. Not only we 

need to investigate the causes of such events and develop plans to protect against them, but 

also we will have to resolve the resulting huge financial loss. Obviously, the insurance and 

reinsurance industry needs to reevaluate the risk in insuring future damages. Extreme Value 

Theory (EVT) (McNeil, 1997) emerges as a basic tool in modeling such risk. 

Catastrophe modeling is one of many tools in the risk management available to insurers 

and reinsurers to predict future losses and better manage and prepare for disasters in the years 

to come. 
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Based on Swiss Re Sigma criteria (2015), an event is classified as a catastrophe and 

included in the sigma database when insured claims, total losses or the number of casualties 

exceed certain thresholds (see Table 1). 

 

Insured loss thresholds 

Total 

economic 

loss 

threshold 

Casualties 

Maritime 

disasters 
Aviation 

Other 

losses 97.6 

million 

Dead or 

missing 
Injured Homeless 

19.6 

million 

39.3 

million 

48.8 

million 
20 50 2000 

Table 1. The sigma event selection criteria, 2014 (Sigma No 2/2015). 

 

The occurrences of the catastrophic events are becoming more frequent and also grow 

indemnity of insurance and reinsurance companies at these events although the difference 

between the insured and uninsured losses is considerable (Fig. 1). 

 

 

Fig. 1. Insured vs uninsured losses, 1970-2014, in USD billion in 2014 prices.  

 

According to the latest sigma study, global insured losses from natural catastrophes and 

man-made disasters were USD 35 billion in 2014, down from USD 44 billion in 2013 and 

well below the USD 64 billion-average of the previous 10 years. There were 189 natural 

catastrophe events in 2014, the highest ever on sigma records, causing global economic losses 

of USD 110 billion. Around 12,700 people lost their lives in all disaster events, down from as 
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many as 27,000 in 2013, making it one of the lowest numbers ever recorded in a single year. 

Total economic losses from all disaster events in 2014 were USD 110 billion, down from 

USD 138 billion in 2013, and well below the previous 10-year annual average of USD 200 

billion (Swiss Re Sigma No 2/2015). 

In the modelling of catastrophe events statistical methods are commonly used for inference 

from historical data. Extreme Value Theory (EVT) (Embrechs et al., 1997) emerges as a basic 

tool in modelling such risk. It began with the paper by Dodd in 1923, followed by the paper 

Fisher and Tippett in 1928, after by the papers by de Finetti in 1932, by Gumbel in 1935 and 

by von Mises in 1936, to cite the more relevant; the first complete frame in what regards 

probabilistic problems is due to Gnedenko in 1943. Following the theoretical developments of 

the extreme value theory many scholarly papers, as (Han, 2003; Skřivánková and Tartaľová, 

2008; Jindrová and Sipková, 2014; Jindrová and Jakubínský, 2015) dealing with the variety of 

practical applications of the theory were published. The Generalized Extreme Value (GEV), 

Gumbel, Frechet, Weibull, and the Generalized Pareto (GPD) distributions are just the tip of 

the iceberg of an entirely new and quickly growing branch of statistics. Various authors have 

noted that this theory is relevant to the modelling of extreme insurance losses.  

 

2. Methodology and data 

Catastrophic events are undoubtedly extreme events, as seen from the Table 1. They are also 

extremal events, also called “rare” events. Extremal events share three characteristics: 

relatively rareness, huge impact and statistical unexpectedness. Although catastrophic events 

are rare events and their occurrence is very small, over longer period we have observed 

several.  

 

 

Fig. 2. Chronologically arranged the insured losses of natural catastrophes, 2010-2014. 
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Our modelling focus on chronological list of 323 insured losses (in USD millions) of 

natural catastrophes in time period from January 1st 2010 to December 31st 2014, published in 

Swiss Re Sigma 2011-2015 (Fig. 2). The time series plot (Fig. 2) allows us to identify the 

most extreme losses and their approximate times of occurrence. 

In the modelling of extremal events different approaches had been proposed for certain 

circumstances. In this paper we are concerned with fitting the generalized Pareto distribution 

(GPD) to losses which exceed high enough thresholds using the Excess over Threshold 

Method (EOT) (Embrechs et al., 1997). The Generalized Pareto Distribution (GPD) is the 

limit distribution of values excess of high thresholds. The main connection is in the following 

GPD theorem (Fisher and Tippett, 1928). 

Suppose ...,, 21 XX  are independent, identically distributed with distribution F. Then for 

a large enough threshold u, the conditional distribution function of Y = (X – u / X > u) is 

approximately: 
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defined on   0 > ~x/1   and  0 >x   :x  . 

The family of distributions defined by equation (1) is called the General Pareto 

Distribution (GPD) family. For a fixed high threshold u, the two parameters are the shape 

parameter ξ and the scale parameter~ .  

The modelling using the excess over threshold method follows the assumptions and 

conclusions in GPD Theorem. Suppose 1 2, ,..., nx x x  are raw observations independently from 

a common distribution F(x). Given a high threshold u, assume      kxxx ...,,, 21  are an 

observation that exceeds u. Here we define the ascendances as   uxx ii   for ki ,...,2,1 . 

By GPD Theorem ix  may be regarded as realization of independently random variable 

which follows a generalized Pareto family with unknown parameters   and ~ . In case 0 , 

the likelihood function can be obtained directly from (1) (Han, 2003):  
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3. Results and discussion 

Procedures for goodness-of-fit tests with GPD are part of a number of statistical software 

packages. We have used for modelling insured catastrophic losses by GPD the statistical 

package Statistica 12. 

 

u = 3 000, n = 11

 Empirical distribution function
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Fig. 3. GPD fitted to 11 exceedances of the threshold 3000. 

 

u = 4 000, n = 10
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Fig. 4. GPD fitted to 10 exceedances of the threshold 4000. 

 

We have fitted a generalized Pareto distribution using the maximum likelihood method for 

parameters estimation to the data above threshold of 3,000 (Fig. 3) and above threshold of 

4,000 (Fig. 4). 
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These plots are useful for examining the distribution based on sample data. We have 

overlaid a theoretical CDF on the same plot with empirical distribution of the sample to 

compare them. 

The stair lines on Fig. 3 and Fig. 4 show the empirical distribution functions of empirical 

data and the dashed lines present the theoretical CDF of the estimated generalized Pareto 

distributions for different thresholds. The dotted lines are the lower and upper bounds of the 

95% confidence interval estimates of the CDF. It can be seen that the estimated parametric 

CDF falls inside the bands. 

In Fig. 3 and Fig. 4 we see the good fit of both generalized Pareto distributions of insured 

losses on natural catastrophes.  
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Fig. 5. QQ-plots against the GPD fitted to exceedances of the thresholds 3000 and 4000. 

 

The QQ-plots (Fig. 5) against the generalized Pareto distributions there are another way to 

examine visually the hypothesis that the losses which exceed a very high threshold come from 

estimated distributions. 

 

 u = 3 000  u = 4 000  

Parameter ξ 8,222.9790  6,849.8860  

Parameter ~  -0.1636  -0.3253  

p-value 0.7901  0.8835  

Table 2. Comparison of estimated GPD for different thresholds. 
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Table 2 presents the parameters of the fitted generalized Pareto distributions on the data 

above the different thresholds. By p-values in this table we can state the best fit in the case of 

threshold u = 4,000. 

The publication Swiss Re Sigma No 2/2015 provides data about the 40 most costly 

insurance losses in time period 1970-2015. These data are the basis for continuing of our 

analysis. These values are ranging from 3,410 to 78,638 million USD in 2014 prices. We 

want to verify whether the 2-parameter Pareto distribution with cumulative distribution 

function defined by form: 

 ( ) 1 , ,

b

a

a
F x p x a

x

 
    

 
 (3) 

fits the data adequately by selecting Goodness-of-Fit Tests, analogously to the (Pacáková 

and Linda, 2009) or (Pacáková and Zapletal, 2014). The first step is parameters estimation by 

maximum likelihood method analogously to the (Pacáková and Gogola, 2013). The estimated 

parameters of the fitted distribution as the output from Statgraphics Centurion XV are shown 

in Table 3. By (3) estimated parameters are a = 3410 and b = 1.0478. 

 
 

  Shape (parameter a) Lower thereshold (parameter b) 

1.0478 3,410 

Table 3. Parameters of fitted distribution for Pareto (2-Parameter). 

 

DPLUS DMINUS DN p-value 

0.0576 0.0955 0.0955 0.8588 

Table 4. Results of Kolmogorov-Smirnov Test for Pareto (2-Parameter). 

 

Table 4 shows the results of test run to determine whether the most costly insured losses 

can be adequately fit by a 2-parameter Pareto distribution (3). Since the smallest  

p-value = 0.8588 amongst the tests performed is greater than or equal to 0.05 we cannot reject 

the idea that losses comes from a 2-parameter Pareto distribution with 95% confidence. 

Table 5 contains the selected quantiles of Pareto distribution, which is well fitted model for 

the most costly insured catastrophe losses. If will not change conditions of the occurrence of 

these events on the globe, will not change even their distribution. Then 50% of the most 

costly insurance losses in future will exceed 6,607.8 million USD, 10% will exceed 30,701.5 

million USD, 1% will exceed 276,417 million USD.  
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Lower Tail Area (<=) Pareto (2-Parameter) 

0.50 6,607.8 

0.75 12,804.5 

0.90 30,701.5 

0.95 59,492.8 

0.99 276,417.0 

Table 5. Quantiles of fitted Pareto distribution. 

 

Conclusion 

We have shown that fitting the generalized Pareto distribution to insured natural catastrophic 

losses which exceed high thresholds is a useful method for estimating the tails of loss severity 

distributions. This is not altogether surprising. As we have explained in part 2, the method has 

solid foundations in the mathematical theory of the behavior of extremes; it is not simply 

a question of ad hoc curve fitting. 

The results of the analysis based on data of insured losses in the world natural catastrophes 

in time period 1970-2014 are alarming. Are justified concerns that the capacity of the world’s 

insurance and reinsurance markets in the future will not be sufficient to cover these risks. It is 

high time for humanity to start emphatically remove the causes of the occurrence of 

catastrophes and their consequences. 

The knowledge the probability models for prediction of consequences of catastrophe 

events allow to insurance or reinsurance companies to select the best options to cover these 

risks and correct setting premiums or reinsurance. 
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