
The 9th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

215 

 

On applying the genetic algorithm in the aggregation of regression models 

Jacek Stelmach1 

 

Abstract 

Aggregation of base models is one of the issues which determine the quality of forecasts regression models. 

Known literature describes mainly aggregation of classification models, usually recommending for regression 

models the arithmetic average of base models forecasts. The presented study adapts the weighted average 

method, often used in the aggregation of classification models. In the experiment, there were compared: 

aggregate functions with the weights calculated on the basis of selected measures of the quality of the base 

models - with weights determined by a genetic algorithm. The study was carried out using computer simulation, 

with both: simulated data and selected empirical data sets. 
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1. Introduction 

Good features of aggregated models in regression analysis coming from the use of base 

models that are constructed in a variety of ways. One of the crucial issues that influences the 

quality of prediction capabilities is the way how the forecasts of D1, …, DM base models are 

aggregated into aggregated D* model. Known literature presents a number of aggregation 

functions that defines the aggregation rule of M base models: 
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However, most of known methods were developed for classification problems. It is generally 

recommended to use the arithmetic average of predictions of base models, for regression 

analyses purposes. Such function is, however, sensitive to possible appearance of outliers, the 

presence of which may degrade the accuracy of prediction. 

 One of the possibilities to reduce the impact of outliers is to use the weighted average in 

the similar way as for classification models, where the three classes of aggregation methods 

are the most commonly used (Gatnar, 2008): 

 majority voting, the model assigns an observation to the class chosen by the largest 

number of base models: 
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 weighted majority vote, prediction result is defined according to the formula:  
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 using naïve Bayesian classifier with the vector of probabilities a posteriori: 
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where I – indicator function, Cj – class indicated by base model for [xi, yi] observation, dm – 

prediction result, Wj – discrimination index: 
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This paper presents the results of the experiments that implements second method for 

regression purposes: 
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The crucial problem is how to determine the weights to get the most accurate aggregated 

model. It should be a compromise between fitting the weights to learning sample and ability 

to generalize a modeled phenomenon. 

 

2. Experiment description 

2.1 Datasets 

The experiment was carried with both types of datasets: simulated and empirical.  

Simulated datasets include (200 observations created): 

Dataset 1. Uncorrelated predictors 101 ,..., xx  ~ N(0,1), dependent variable according to 

formula: 
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where 101,...,   - the coefficients sampled from range (-1, 1), e ~ N(0,1) – random error. 

Dataset 2.  Uncorrelated predictors 101 ,..., xx  ~ N(0,1), dependent variable according to 

formula: 
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4332211
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where , e – as above. 
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Dataset 3.  Predictors 101 ,..., xx  correlated according to Table 1 with zero means vector, 

dependent variable according to formula (7). 

Dataset 4.  Predictors 101 ,..., xx  correlated according to Table 1 with zero means vector, 

dependent variable according to formula (8). 

Dataset 5. Predictors 101 ,..., xx  correlated according to Table 2 (higher dependencies) with 

zero means vector, dependent variable according to formula (7). Additionally for 5% of 

random observations, the value of dependent variable was replaced by the value five times 

bigger (simulation of additional distortion).  

 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.4 1.0 0.4 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.4 1.0 0.4 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.4 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.4 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.4 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 

Table 1. Covariance matrix of “Dataset 3” and “Dataset 4”. 

 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.9 

0.7 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9 

0.7 0.5 1.0 05 0.5 0.5 0.5 0.5 0.5 0.6 

0.7 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.6 0.7 

0.7 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.6 

0.7 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.6 

0.7 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.6 

0.7 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.6 

0.7 0.5 0.5 0.6 0.5 0.5 0.5 0.5 1.0 0.6 

0.9 0.9 0.6 0.7 0.6 0.6 0.6 0.6 0.6 1.0 

Table 2. Covariance matrix of “Dataset 5” and “Dataset 6”. 
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Dataset 6.  Predictors 101 ,..., xx  correlated according to Table 2 (higher dependencies) with 

zero means vector, dependent variable according to formula (8). Additionally for 5% of 

random observations, the value of dependent variable was replaced by the value five times 

bigger (simulation of additional distortion). 

Three next simulated datasets coming from Friedman (1991) proposal. Friedman 

recommends presented generators to create a multi-dimensional samples that put high 

demands on non-parametric regression methods due to their non-linearity and random 

components. 

Dataset 7. Uncorrelated predictors 101 ,..., xx  ~ N(0,1), dependent variable according to 

formula: 
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where e ~ N(0,1) – random error. 

Dataset 8. Four predictors uniformly distributed in the ranges: 

1000 1  x  

 560240  x  

10 3  x  
1000 1  x  

dependent variable according to formula: 
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where e ~ N(0,9) – random error. 

Dataset 9. Four predictors uniformly distributed as for Dataset 8, dependent variable 

according to formula: 
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where e ~ N(0,1) – random error. 

Empirical datasets were chosen from UCI Machine Learning Repository as in Table 3.  

The variables: PRP in „Computer” dataset, str in “Concrete” dataset, medv in “Housing” 

dataset and pw in “Iris” dataset were set as dependent variable, all the rest of variables was 

set as predictors. Because “Iris” dataset contains three classes: Setosa, Versicolor and 

Virginica, the experiment was carried out separately for each class. 
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Dataset 

name 

Observations 

number 

Variable 

number 

Repository address 

Computer 209 7 http://archive.ics.uci.edu/ml/datasets/Com

puter+Hardware 

Concrete 1030 9 http://archive.ics.uci.edu/ml/datasets/Con

crete+Compressive+Strength 

Housing 506 14 http://archive.ics.uci.edu/ml/datasets/Hou

sing 

Iris 150 4 http://archive.ics.uci.edu/ml/datasets/Iris 

Table 3. A list of empirical datasets used in the experiment. 

 

2.2 Methods of weights selection coming from classification models 

Very important issue that determines the quality of aggregated models should take into 

account the minimization of forecasts outliers while preserving the basic advantage of 

aggregation: reducing the aggregate forecast error. Therefore there were proposed four 

methods, main idea of which comes from the classification models: 

W1. All the weights are equal (standard arithmetic average): 

M
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1
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W2. The weights depend on the MAPEm (Mean Absolute Percentage Error) of m-th base 

models prediction: 
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W3. The weights, in a way proposed for classification models by Littlestone and Warmuth 

(1994) are proportional to the expression below, where SEm is standard error of m-th base 

models prediction: 
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W4. The weights depend on SEm: 

m
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2.3 Methods of weights selection with genetic algorithms 

The leading idea of methods presented below was to find such vector of weights which 

minimizes the error of aggregated prediction. It needs to examine all the possible 
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combinations of weights for each base model. According to Opitz and Maclin (1999), 

Breiman (1996) at least 25 base models is an optimal number for classification purposes. 

Stelmach (2013) verified that similar number of base models is necessary for regression 

models. In this experiment m = 30 base models were chosen. It means that the inspection of 

all combinations may require very high, unacceptable time. Therefore it was proposed to use 

genetic algorithms for weights selection purposes. Of course as heuristic method, it does not 

ensure the optimal solution, but most often the result is close to such a solution.  

 Genetic algorithms are class of the evolutionary algorithms invented by Holland (1975) in 

1970s, to find the solutions to optimization and search problems. It is the method that uses 

evolutionary approach inspired by the principles of biological evolution, coding a number of 

parameters into strings or chromosomes (genotypes) to generate another solution approaching 

the optimum (Goldberg, 1989). The algorithm presented in figure 1 includes (Mitchell, 1998): 

 selection – basing on chosen selection operator (fitness function), only genotypes with 

the best fitness value can be reproduced, 

 crossover – forms new offspring from two parent genotypes by combining part of the 

genes from each, randomly choosing the point (points) of crossover and the number of 

such points, 

 mutation – it randomly alters the value of genes with certain probability, recommended 

(based on real evolution process) is to mutate few genes. 

 

Fig. 1. Genetic algorithm.  

 

 Important issue in genetic algorithm is a choice of fitness function, its value decides which 

genotypes can create another generation and influences the final results. In the experiment 
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each weight associated with each base model forecast was coded on 5 bits of genotype with 

SE (standard error of aggregated model prediction) as fitness function. Such coding in the 

most obvious case allows choice of the weights in the range <0, 32>. However, it may cause 

too drastically reduce the magnitude of predictions of some base models. Therefore four cases 

of range of weights were assumed: <0, 32> (GA1), <1, 32> (GA2), <10, 42> (GA3),  

<32, 64> (GA4). 

 

2.4 Monte Carlo simulation 

The base models, using the above datasets were created with three types of methods: 

1. bagging (bootstrap aggregating) sampling with OLS method, 

2. bagging sampling with neural network (MLP type) method, 

3. bagging sampling with regression trees method. 

The datasets were 100 times randomly divided into two parts: validation set (10 

observations) and training (learning) set – all other observations. Based on training set the 

weights calculations were carried out to obtain aggregated forecasts. All the weights, 

calculated according to method presented above were standardized (sum of all the weights has 

to be equal to one). As an indicators of quality of aggregated models two measures were 

calculated: 

 RSE – Residual Square Error for training set, 

 MAE – Mean Absolute Error for validation set. 

The same measures were calculated for “the reference model” obtained by OLS method. 

Both measures were the basis for assessing the impact of the methods of choosing the 

weights on the quality of the obtained regression models.  

 

3. Experiment results 

Regardless of the range of the weights values obtained with genetic algorithm (GA1 – GA4), 

calculated measures were very close. Therefore the discussion of the results was limited to the 

case GA1. Because of huge number of data, the results of the experiment is presented in 

Figure 2 (simulated datasets) and Figure 3 (empirical datasets).  

Black color marks a case in which a value of RSE or MAE measure for particular method is 

higher than the value for OLS method. Table 4 shows the value of measures for empirical 

datasets that shows the differences of MAE prediction error for OLS model and aggregated 

model created with bagging – OLS. 
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W1 W2 W3 W4 GA1 W1 W2 W3 W4 GA1 W1 W2 W3 W4 GA1
Dataset 1 RSE 1 1 1 1 1 1 1 1 1 1 1

MAE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Dataset 2 RSE

MAE

Dataset 3 RSE

MAE

Dataset 4 RSE

MAE

Dataset 5 RSE

MAE

Dataset 6 RSE

MAE

Dataset 7 RSE

MAE

Dataset 8 RSE

MAE

Dataset 9 RSE

MAE

Bagging, OLS Bagging, neural network Bagging, regression treesDataset 

name Measure

 

Fig. 2. Coded results obtained for simulated datasets. 

 

W1 W2 W3 W4 GA1 W1 W2 W3 W4 GA1 W1 W2 W3 W4 GA1
Computer RSE

MAE

Concrete RSE

MAE

Housing RSE

MAE

Iris 1 RSE

MAE

Iris 2 RSE

MAE

Iris 3 RSE

MAE

Dataset 

name Measure

Bagging, OLS Bagging, neural network Bagging, regression trees

 

Fig. 3. Coded results obtained for empirical datasets. 

 

        

Dataset 

MAE values 

OLS W1 W2 W3 W4 GA1 

Computer 42.34 41.71 40.60 40.60 41.94 40.70 

Concrete 8.76 8.77 8.77 8.75 8.75 8.69 

Housing 3.07 3.08 3.08 3.08 3.07 3.01 

Iris 1 0.837 0.831 0.831 0.831 0.831 0.830 

Iris 2 0.089 0.083 0.083 0.083 0.083 0.083 

Iris 3 0.223 0.217 0.217 0.217 0.217 0.211 

Table 4. MAE values of prediction for models created with OLS method and aggregation 

methods based on OLS base models. 

 

Conclusion 

Aggregated regression models allow to reduce forecast error in most of the analyzed cases, 

comparing to Ordinary Least Square method. Additionally, the use of a weighted average as 
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an aggregating function reduced this error. There were no significant differences resulting 

from the different methods of calculating the weights although in most cases the use of the 

genetic algorithm allowed to obtain the most accurate forecasts. During creating base models 

the method of creation must be carefully chosen. In presented results, the highest value of 

errors (even higher than for OLS models) was observed for base models obtained with 

regression trees method. 
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