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Statistical arbitrage – critical view 
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Abstract 

Statistical arbitrage is a trading strategy on portfolio with value driven by stationary, autoregressive process. This 

article briefly presents role of innovations with conditional heteroscedasticity on cointegration based statistical 

arbitrage ability, and their influence on cointegration testing according to frequentist approach. 

 

Keywords: statistical arbitrage, cointegration, conditional heteroscedasticity 

JEL Classification: C320, C580 

 

1. Introduction – general description of statistical arbitrage problem 

Statistical arbitrage developed by (Burgess, 2000), belongs to the group of quantitative 

trading strategies. It is based on the assumption that log-prices of related financial instruments 

(ex. some subgroup of index constituent stocks, term structure of interest rates) are driven by 

reduced number of common stochastic trends and there exists equilibrium relation between 

log-prices of these instruments. Moreover deviations from levels suggested by equilibrium 

relation, caused by idiosyncratic shocks on log-prices of particular instrument (or subgroup of 

instruments), are reverted by arbitrageurs and related log-prices tends towards new levels in 

which equilibrium relation is met. Assuming that equilibrium relation is given by linear 

function 0t
 β x  of related log-prices in vector tx , process of deviations (also called 

mispricing process) defined as {y }t t
 β x  should be stationary, autoregressive process.  

In such a case vector elements β  are taken as portfolio weights and value of y t  represents 

approximately value of such portfolio in time (approximation is derived in (Chan, 2011)). 

Considered portfolio is called statistical arbitrage or Beta portfolio. In statistical arbitrage 

theory {y }t  which approximates portfolio value, is a stationary, autoregressive process and 

when y t  value deviates from 0, it is expected in the following time moments to take moves 

towards zero (what is signaled by the level of expected value conditional on the process past). 

Knowing that, one observing positive (negative) deviations could take long (short) position in 

statistical arbitrage portfolio and realize profit by taking opposite position when equilibrium is 

subsequently restored. In this article we are showing that relying on expected value of y t  
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conditional on process past is not sufficient to precisely forecast future movement of y t  

values. According to stylized facts about financial log-returns processes (and therefore log-

prices as their cumulative sums) their innovations processes are characterized by conditional 

(typically MGARCH or MSV type) or unconditional heteroscedasticity. Because of that, the 

same idiosyncratic shocks (innovations), which cause deviations of y t  from equilibrium level 

also inflate its future conditional variances, what despite autoregressive property of 

y t  considerably limits ability to make precise value movements forecasts. 

 In statistical arbitrage problem, when we treat log-prices (for example daily closing log-

prices of stocks) of related instruments as belonging to the class of integrated processes (most 

frequently as  1I  vector processes), cointegration come in mind as a phenomenon which can 

describe equilibrium relations between log-prices and VECM model and its extensions, as 

tool for modeling dynamics of log-prices vector process, which is driven by common 

stochastic trends which make it  1I  process and temporary component  0I  shaped by error 

correction mechanism and short term dynamics of log-returns (first differences of log-prices).  

 

2. Cointegration, heteroscedasticity of model innovations and statistical arbitrage 

problem 

Before we consider cointegrated processes we need to define integrated n -dimensional 

(vector) processes. 

 We call n -dimensional process { }tx  integrated of order 0 process:  { } ~ 0t Ix   

0

i

it i tL



x γ ε , where L  is a lag operator,  { } ~ ,t WNε 0 Σ  ( n -dimensional white noise 

process) and  
0 ii




 γ 0 . We call n -dimensional process { }tx  integrated of order d  

( dZ ) process:  { } ~t I dx    { } ~ 0d

t I z  and  1{ } ~ 0d

t I z  

 Let now assume n -dimensional process { } ~ (1)t Ix  given by VAR( )k  model 

1

, 1 ,,
k

t i t i t

i

t t


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characteristic polynomial matrix    
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assume (z) 0A  for z  such that 1z   or 1z  . The number of unit roots 1z  , is exactly 

n r . For 1z   we have (1) 0  A Π , implying that Π  has reduced rank:   .rk r n Π  

So we can make factorization Π αβ , where    dim dim n r  α β  and 

   rk rk r α β .  

 For processes 
1

1

1

k

t t i t i t

i



 



    x αβ x Γ x ε  and ' tβ x  (which is r -dimensional process) to 

exist initial conditions such that both will be (0)I  processes, it is necessary and sufficient that 

 1 0' '     α A β α Γβ , where     1

d
1

d
zz

z
A A , 

1

1

k

n i

i





 Γ I Γ  and α , β  are 

respectively  n n r   matrices of orthogonal complements of α  and β , with  

rank    rk rk n r   α β . 

 When above mentioned conditions are met Johansen version of Granger Representation 

Theorem states that (1)I  process { }tx  is cointegrated of order  1,1 :  { } ~ 1,1t CIx  and can 

be equivalently represented as (for 1, ,t T  ): 

 
1

1 1

1 1

k t

t t i t i t t i t

i i

L


 

 

       x αβ x Γ x ε x C ε C ε A , where  
1

' '


   C β α Γβ α , 

   1 ~ 0tL IC ε  and ' β A 0  ( A  is associated with initial value). 

 Column vectors from β  matrix form a basis for cointegration space which is r -

dimensional subspace of n
R , where 0 r n   and for any vector  spb β , we have 

 { ' } ~ 0t Ib x , because ' 0b C , specifically ' tβ x  forms r -dimensional  0I  process.  

Summarizing for { } ~ (1,1)t CIx , we have: { } ~ (1)t Ix , { } ~ (0)t Ix , { } ~ (0)t t Iy β x , 

additionally } 0)'{ ~ (t I β x . 

 When related log-prices are already identified, the central part in statistical arbitrage 

problem is to model and forecast deviations process. When we assume 1r   (higher 

cointegration rank may suggest that chosen group of assets includes some mutually exclusive 

subgroups of related log-prices) deviations process is represented by scalar process 

{y }t t
 β x , which is stationary, autoregressive process. Unfortunately when heteroscedastic 

variance in y t  is present, autoregressive property is not a sufficient condition to make precise 

directional forecast of y t  and take profitable positions on Beta portfolio based on them.  
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To show this let make another assumptions which will incorporate stylized facts about 

financial log-returns by extending VECM model with iiN  innovations process. 

 For most financial log-returns, innovations processes { }tε  show conditional 

heteroscedasticity (ex. MGARCH type) and are no longer strict white noise processes. They 

are composed of uncorrelated but not independent in time variables. Sometimes also 

unconditional heteroscedasticity is observed, caused for example by structural breaks, which 

permanently increases mean dispersion level from some moment in time. Mentioned types of 

innovations heteroscedasticity are embraced by a group of martingale difference sequence 

(MDS) processes. 

 Consider VECM-MGARCH2 model for log-returns of related stocks with  1,1CI  

cointegrated n -dimensional log-prices process, with 1r   implying β  composed of only one 

cointegrating vector. For ease of interpretation we assume that there is no short-term 

dynamics in model i.e. i Γ 0 , 1, , 1i k   . 

VECM-MGARCH model ( 1, ,t T  ): 


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where  1/2 1/2 't t tH H H  is “square root” decomposition of 
, , 1, ,[ ]t ij t i j nh  H  representing 

covariance matrix in moment t  conditional on process past, H  is a matrix function 

representing MGARCH, with some previous values of 
'

t j t j ε ε  and 
t jH  as arguments, { }tη is 

n -dimensional process of independent standardized variables, ex. multivariate normal or 

multivariate t-Student distribution. 

 Deviation process (mispricing process) for above model with cointegration rank 1r   and 

cointegration vector  1 'n  β  is a scalar process { }ty  given by: 

  11t t t ty      β x β α β x β ε , 

1

y

t t ty y    

where  1  β α ,  1,1    for { } ~ (1,1)t CIx  and y

t t  β ε . 

                                                           
2 Type of MGARCH model is not precisely specified here to make more general statements. 
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Deviations process { }ty  is in fact stationary autoregressive, but let analyze its properties such 

as expected value and variance conditional on process past. 

Let ( , )t s s t x  be a  -algebra generated by the process { }sx  up to moment t . 

 1 1|t t tE y y  , 

         2

1 1 1 1 1

1 1

| | | , |2|
n n

y

t t t t t t i ti t i j ti tj t

i i j i

V V V CV ovy           

  

        β ε

 

  2

1 , ,

1 1

| 2
n n

t t i ii t i j ij t

i i j i

V y h h  

  

     . 

Conditional variance form for ty  shows that in general conditions { }y

t  is not given by 

univariate GARCH model. First component in ty  conditional variance 2

,1 i ii t

n

i
h

  is always 

positive and cumulates (with positive multipliers 2

i ) conditional variances 
,ii th of univariate 

constituents of tε  from innovations process, increasing value of  1|t tV y  . Second 

component which is twice 
,1

n

i j i i j ij th 
   , may take negative values (but not necessarily), 

and in some conditions may reduce level of conditional variance of ty . Sign of second 

component depends on signs of parameters i , 
j  and conditional covariances 

,ij th for 

constituents of tε . This findings confirm that because of increased conditional variance 

 1 |t tV y   , information about  1 |t tE y    alone is not precise indicator of future 1ty   value 

movements. Moreover conditional distribution 1 | tt ε  type and parameters strongly affects 

conditional distribution of 1 |t ty    as a linear combination of 1 |t t x  constituents. In such  

a case to make useful predictions all available information on conditional distribution of 

1 |t ty    should be exploited, not only on selected parameters of it. From conditional 

distribution of 1 |t ty    we can derive quantile forecasts or asses probability of up or down 

movement from current ty  value. Because of complex shape of conditional distribution 

1 |t ty    (which may be asymmetric) and complicated relations describing its parameters such 

situation may occur that despite  1sgn |t t tE y y      suggests specific direction of future 

movement, taking into account all available information about conditional distribution of 

1 |t ty    may point that opposite direction movement is more probable. In this situation 
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expected autoregressive, reverting tendency is dominated by overdispersion and statistical 

arbitrage cannot be realized. 

 We show below 1000T   length sample series simulated from VECM-CCC-GARCH 

( 2n  , 1r   with 2 1  cointegration vector β , model has no short-term dynamics) for tx , 

tx , ' tty  β x  and scatter plot for  1 2, 't t tx xx . 

 

 

Fig. 1. Scatter plot for  1 2, 't tx x  with marked attractor given by the subspace  sp β .  

 

One dimensional subspace spanned by β  orthogonal complement, denoted by  sp β  forms 

an attractor for considered process { }tx , as for 
t c

 x β  with arbitrary 0c   we have 

' 0't t cy  

   β x β β , and for assumed model ' tty  β x  is driven towards 0. 

 

   

Fig. 2. Simulated time series for log-prices  1 2, 't t tx xx  (Left) and log-returns 

 1 2, 't t tx x   x  (Middle). Simulated realization of deviations (mispricing) process 

' tty  β x  (Right). 

 

 VECM-MGARCH may be too restrictive in its construction, because it is suggested that 

because of transaction costs, only higher absolute deviations from equilibrium relation are 

corrected by arbitrageurs. To include this fact, (Balke and Fomby, 1997) proposed extension 

of VECM model part called TVECM (Threshold VECM) with three regimes and one 

cointegrating vector, 1r  :  
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       

 
x α β x Γ x ε  

where I  is indicator function and for middle regime 2m  we have: 1 20 ( , ]c c , 
(2) 0α , 

which means there is no cointegration in middle regime and ~ (1)t ty I β x  for 1 1 2t cc y   . 

 In this case, because of nonlinear dynamics, model has no representation stated by Granger 

Representation Theorem, so we need to extend definitions of integration and cointegration. 

Extended definition of  0I  n -dimensional (vector) process make use of functional central 

limit theorem (FCLT) (more in Davidson, 1994). 

We call n -dimensional process { }tx  an  0I  process ⇔ [0,1]a   and T  : 

1

2

1

( )
aT d

t

t

aT
  



 xx Σ W , where d  symbolizes weak convergence (convergence in distribution), 

    is a floor function, ( )aW  is n -dimensional standard Wiener process and 

 1

1
lim

T

t t
T

oT C v

 
 xΣ x  is called long-term covariance matrix. For vector  I d  processes 

definition remains unchanged. 

 Cointegration in this extended approach is defined without appealing to some explicit 

model specification (so it can embrace models with different types of short-term and error 

correction dynamics). 

 Let  { } ~ 1t Ix  with respect to extended definition. Additionally we assume decomposition 

of invertible matrix ,[ ]β β β , where  dim n r β ,    dim n n r   β , 0 r n   and 

'  β β 0 . We can decompose { }tx  into two components: 
'

'
'

t

t t

t

   
   
 


 

uβ
β x x

yβ
, for which 

 
1

2 ~ (1)
d

aT
aT I



  
u W  and  2

1

' 1
T

t t p

t

T o



y y , where  

 aW  is a  n r -dimensional standard Wiener process. Here { }'t ty β x  represents 

transitory component (which can also be generated by nonlinear process with short-memory), 

additionally β  spans r -dimensional cointegration space, on the other hand { }'t tu β x  is a 

stochastic trend component, which is “variance dominating”, what means that { }tu diverges at 

faster rate than { }ty .  
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3. Difficulties with inference on cointegration in case of heteroscedastic innovations 

We briefly consider here only frequentist approach to testing cointegration under 

heteroscedastic innovations of specific type. 

 Classical Johansen cointegration rank tests (Johansen, 2006) associated with  1,1CI  

process VECM model with iiN  innovations called maximum eigenvalue test (cointegration 

rank equals: 0 :H r  vs. 1 : 1H r  ) and trace test ( 0 :H r  vs.  1 : { } ~ 0tH n I x ) with 

asymptotic distributions under null hypothesis derived with use of FCLT and specified as 

functionals of standard Wiener process. It has been shown (Cavaliere et al., 2010) that when 

we attenuate assumptions about innovations process from iiN  to one belonging to MDS class 

of processes (which includes conditionally and unconditionally heteroscedastic processes) 

Johansen tests will weakly converge to the same asymptotic distributions. 

 In VECM models with heteroscedastic innovations Johansen tests for finite-length samples 

are regarded as quasi-likelihood ratio tests because they use likelihood function for VECM 

model with iiN  innovations. These quasi-LR tests use asymptotic critical values what is 

reflected in mild to high test size distortions. In simulation study (Maki, 2013) for Johansen 

tests, true null hypothesis of no cointegration ( 0r  ) was more frequently rejected than 

assumed nominal critical level stated, under innovations with MGARCH type of conditional 

heteroscedasticity. To improve finite-length sample Johansen quasi-LR tests performance 

wild bootstrap procedure was suggested (Cavaliere et al., 2010). Wild bootstrap unlike other 

types of bootstrap methods (ex. VECM iid  bootstrap by (Swensen, 2006)) enables to retain 

heteroscedasticity structure of original series. In single wild bootstrap replication QML 

estimated VECM model errors 
1{ }T

t tε  are multiplicatively distorted by univariate (0,1)iid  

process 
1{ }T

t tv 
 and new series of b

tx  are constructed using 

1

1

ˆ ˆˆ
k

b b b b

t t i t i t

i

 



    x αβ x Γ x ε , , ,1t T   where b

t t tv ε ε  with 
1{ } ~ (0,1)T

t t iidv 
, 

 0 0 1 1, , , 'b

k   x x x x . Wild bootstrap p -value of Johansen quasi-LR test with null 

hypothesis of r  cointegration rank, for B  replications of wild bootstrap and sample length T  

is calculated by:  1

,

1

,

B

r b rr T

b

I Qp B Q



  , where I  is a indicator function, rQ  and 
,r bQ  are 

respectively a quasi-LR test value calculated for VECM model estimated using genuine series 

tx  and series b

tx  constructed in b -th replication of wild bootstrap. 
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 Simulations (Cavaliere et al., 2008; Cavaliere et al., 2010) showed under null of no 

cointegration and MGARCH innovations, reduction in test size distortion for presented wild 

bootstrap variant in comparison to tests using asymptotic critical values, but these bootstrap 

tests are still associated with VECM model assuming linear error-correction and short-term 

dynamics. There are some propositions of cointegration tests having as an alternative 

hypothesis models with some specific type of nonlinear error-correction and short-term 

dynamics, but according to simulations (Maki, 2013) they suffer from non-acceptably large 

size distortions under MGARCH heteroscedastic innovations. In statistical arbitrage problem 

it is desired to use cointegration tests not requiring specification of model dynamics in 

advance. Using presented earlier in this work extended definitions of integrated and 

cointegrated processes Breitung suggested cointegration rank test (Breitung, 2002) which is 

asymptotically free of nuisance parameter of long-term covariance, which is influenced by 

type of short-term dynamics (linear/non-linear, number of included lags etc.), eventual 

conditional heteroscedasticity and parameters related to them. No prior model specification is 

needed to conduct Breitung cointegration test. It is a very important aspect because in 

statistical arbitrage problem it is not known in advance which assets have related log-prices 

processes. Specification of models for log-prices for many subgroups from adopted universe 

of assets would be problematic.  

 We now briefly discuss Breitung cointegration rank test construction.  

 Let 
1

'
T

tT t tE


 x x  and 
1

'
T

tT t tF


 X X  where 
1

t

it i
X x . Breitung cointegration test 

uses in its construction solution of generalized eigenvalue problem: 0T TF E   . For 

eigenvalue 
j  , ,1j n   we have 

'

'

j T j

j

j T j

E

F
 

v v

v v
, so when 

jv  belongs to  sp β  we have: 

 2'j T j pE TOv v ,  4'j T j pF TOv v  and  2

j pO T  . On the other hand when 

 spj v β , then for T  : 
2

jT   . 

 Breitung test considers hypothesis 0 :H  n r  common stochastic trends ( r  cointegration 

rank) against 1 :H  n r   common stochastic trends ( r  cointegration rank) and employs 

statistic: 2

1

n r

n r jj
T 



 
   , where 21 n     are eigenvalues from the solution of 

generalized eigenproblem. Under null hypothesis test statistic has asymptotic distribution 

derived with use of FCLT which is a trace of a specified functional of  n r -dimensional 

standard Wiener process defined on [0,1] , free of nuisance parameter of long-term 
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covariance. Under alternative test statistic asymptotically tends to infinity, so test has right-

side critical area. According to simulations results (Maki, 2013), Breitung cointegration test 

using is recommended for finite length samples, when innovations are of MGARCH type and 

null of no cointegration (its size distortion was minimal among considered tests).  

 

Conclusion 

Cointegration between log-prices of related assets is a necessary but not sufficient condition 

to statistical arbitrage condition to hold. Shocks causing deviations from equilibrium relation 

also increase dispersion of deviations process, so autoregressive reverting tendency may be 

dominated by inflated conditional variance, and future movements of process can be hard to 

predict and even opposite to those suggested by expected value conditional on process past. 

Another obstacle in implementing this strategy under heteroscedastic innovations is increased 

chance (with respect to assumed test critical level) for most types of tests with null of no 

cointegration, of finding false relations of log-prices. 
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