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Modelling mortality rate of the very old 

Ján Gogola1 

 

Abstract 

One of the factors of the economic and financial prosperity of the country is the age 

structure of the population. The bases for the age population structure calculation are the life tables. The 

indicator specific mortality rate is usually calculated on the base of the known data concerning the deaths and 

exposures to risk. Future mortality of the very old presents additional challenge since data quality can be poor at 

such ages. The greatest problem is lack of data at these age groups for the statistical processing. We consider 

stochastic mortality – Cairns, Blake and Dowd model, which is particularly well suited at very high ages. 

Characteristics specific mortality rate was calculated for the age categories 85-110. Results for selected countries 

(Czech Republic, Slovakia, Poland, Hungary, Austria and Japan) were found and compared.  
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1. Introduction 

In advanced population recently there has been a gradual extension of the life expectancy 

(Finkelstein, 2005). In the Czech Republic life expectancy currently hovers around 78 years 

(75 for males/81 for females) (Andel, 2014). It is lower than most of Western countries. In the 

paper (Langhamrová et al., 2011) there are analysed trends in life expectancy in selected EU 

countries since 1950 with special attention to the Czech Republic. Another study (Boncz et al.) 

analyses change in the health status of the population in the central and Eastern Europe (CEE) 

for years 1990-2010. They showed that life expectancy at birth for males improved in CEE by 

4,8 years and in EU-15 by 5,4 years.  

Our paper follows on article Jindrová and Slavíček (2012). They deal with the 

development and the prediction of life expectancy in selected European countries (Czech 

Republic, Slovakia, Finland, Spain) by applying Lee-Carter model.  

We use data on male and female deaths and exposures from the Human Mortality Database 

(www.mortality.org). The data are available by country for (a) single ages from age 0 to age 

110+, and (b) single years (c) males, females and the whole population. The periods for which 

data are available vary by country. We will report results for six countries (Poland, Czech 
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Republic, Slovakia, Hungary, Austria, Japan). We consider the restricted age range 40 to 110, 

the range of greatest interest to providers of pensions and annuities. 

Let calendar year t run from exact time t to exact time t+1 and let txd ,  be the number of 

deaths aged x last birthday in calendar year t. We suppose that the data on deaths are arranged 

in a matrix  txd ,D . In a similar way, the data on exposure are arranged in a 

matrix  txa ,A  where txa ,  is a measure of the average population size aged x last birthday in 

calendar year t, the so-called central exposed to risk. We approximate the initial exposed to 

risk txtxtx dae ,,,
2

1
  and let  txe ,E  denote the matrix of initial exposures. We suppose 

that  txd ,D  and  txe ,E  are each ya nn  so that we have an  ages and yn  years. 

We denote the mortality rate at exact time t for lives with exact age x by txq , . The mortality 

rate expresses the probability that a life aged x at exact time t dies in the following year, i.e. 

between t and t +1. 

If we treat txd ,  as a random variable, txD , , and initial exposure txe , , as fixed, then txD ,  has 

a binomial distribution: 

txD , ~  txtx qeBi ,, ; , (1) 

which leads us to maximum likelihood estimates of txq ,  as: 

tx

tx

tx
e

d
q

,

,

,
ˆ  . (2) 

A typical life table provides one-year probabilities of death xq  according to age x, of 

individuals. Crude mortality rates can be derived directly from death and exposure data at 

each age. However, mortality rates are often averaged over time to smooth the year-to-year 

variation in crude mortality rates. 

 

40 50 60 70 80 90 100 110

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age

q
_

x

 

Fig. 1. Crude mortality rate with 95% confidence intervals for population of Poland. 
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It is generally accepted that immediate post-natal mortality and the “accident hump” aside, 

mortality rates increase with age. 

Let             





t

tx

t

tx

x
e

d

q
,

,

ˆ  ,             (3) 

be a measure of mortality by age x averaged over years t. 

Figure 1 shows crude mortality rates xq̂  with the corresponding 95% confidence interval 

for the restricted to ages 40-110 for population of Poland. We can see how the intervals widen 

steeply for high ages (higher than 100 years). 

The modelling of mortality at high ages presents additional challenge to the actuary since 

data quality can be poor at such ages.  

In this paper we firstly apply generalized linear model (GLM). GLM for individual mortality 

is typically based around the Bernoulli model, using xq̂  and logistic (or logit) transformation, 

which has been widely used in actuarial practice. The logistic mortality law can be written as: 

x
q

q

x

x 













1
log , (4) 

which is an expression of a simple GLM, where age is the only covariate, and the linear 

predictor is a linear combination of age and a constant. 

One of the benefits of using a logistic link in the model relates to the ease of interpretation. 

The transformation 
x

x

q

q

1
 turns a probability into the equivalent odds in favour of the event 

(in this case, death). Thus, the odds that an older individual dies within one year increase over 

that of a younger individual with each year of age by e . 
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Fig. 2. Logit mortality rates by age for Poland averaged over years; observed (points ) and 

fitted by GLM (dashed line). 
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The scatter plot in Figure 2 shows observed logit mortality rates averaged over time.  

A striking feature of this plot is the fall in mortality rate for ages around 105 years. We do not 

believe mortality rates fall at high ages, so there must be a problem with data.  

However actuaries still need to produce forecast at high ages since the calculation of 

lifetime annuities and pensions requires mortality rates up to say 105 or 110 years, well above 

the age at which good-quality data are typically available. 

The solution of this problem we see in modelling mortality up to an age where the data are 

credible. Therefore we apply a model with extrapolation for higher ages built into its structure. 

For this purpose we use Cairns-Dowd-Blake model (we will refer to it as CBD model): 

)(logit )2()1(

, xxq tttx    (5) 

where x  is the mean age in the sample range. 

 

2. Results 

CBD model is a stochastic model which is designed for modelling longevity risk in pensions 

and annuities. It exploits the relative simplicity of the mortality curve (i.e. near log linearity). 

CBD model is built on observation that logit of mortality rates are approximately linear for 

adults (at age above 40). 
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Fig. 3. Values of )1(

t (left) and )2(

t (right) fitted to population of Poland. 

 

We can think of CBD model as a collection of Gompertz models (Lee et al.), one model for 

each year. The coefficients, the intercepts 
)1(

t  and slopes 
)2(

t  in the CBD model, with data 

of Poland restricted to ages 40-85 and years 1960-2009, are shown in Figure 3. 
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On the left-hand side of Figure 3. we can see how the general level of mortality has fallen 

the last 25 years, while the right-hand side plot shows the rate of change (slope) of mortality. 

We can see why CBD model is so well suited to predict in the age direction. The structure 

of CBD model allows us to extend the forecast in the age direction. So first we fit CBD model 

with data in which we have confidence (ages 40-85). Then with the fitted values of )1(

t   

and )2(

t  in place, expression (5) provides fitted and forecasted mortalities for suspected ages 

85-110. Extrapolation in age is straightforward with the CBD model, since the age function is 

a straight line. This extrapolation does not depend in any way on data above age 85.  

The extrapolation follows the curve established with the data up to age 85.  

In Figure 4 we can see that the fitted line follows quite well up to around age 80, the model 

assumption under-rides the data above age 80. It suggests that CBD model underestimates the 

mortality rate at high ages. 

 

Conclusion 

Figure 3 suggests that it should be possible to forecast )1(

t  and )2(

t . Cairns et al. (2009) used 

a bivariate random walk with drift for forecasting. With the forecasted values )1(ˆ
t and )2(ˆ

t  in 

place, expression (5) yields a forecast for the whole life table.  

Extrapolative projection models are the most common of the models used for forecasting 

mortality, but such models will only be reliable if past trends continue. The medical advances 

can cancel extrapolative projections by changing the trend.  
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Fig. 4. Logit of mortality rate by age averaged over year for population of Poland: observed 

(points ) and fitted by CBD model (solid line). 
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We have applied the CBD model for different countries (Poland, Czech rep., Slovakia, 

Hungary, Austria, Japan). CBD model shows that mortality rates in all countries have the 

following features in common.  

In the Appendix (Figures 5-9) we have plotted the maximum likelihood estimates for the 

parameters for each country. While in developed countries (Japan, Austria) the )1(

t  has 

declining continuously whole the time (from 1960 to 2009), in former socialistic countries we 

can see declining only over the last 20-25 years. Changes in political system are likely to 

influence the improvements in population health, as indicated by life expectancy and 

mortality rates. The changes over time in )1(

t  have been approximately linear. An increase in 

)2(

t over last 20 years in the case of former socialistic countries, that is an increase in the 

steepness of the logit-transformed mortality curve, means that mortality (in logit scale) at 

younger ages improves more rapidly than at older ages. With the rapid aging of the 

population, mortality forecasting becomes increasingly important, especially for the insurance 

and pension industries. 
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Fig. 5. Values of )1(

t (left) and )2(

t (right) fitted to population of the Czech Republic. 
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Fig. 6. Values of )1(

t (left) and )2(

t (right) fitted to population of Japan. 
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Fig. 7. Values of )1(

t (left) and )2(

t (right) fitted to population of Hungary. 
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Fig. 8. Values of )1(

t (left) and )2(

t (right) fitted to population of Austria. 
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Fig. 9. Values of )1(

t (left) and )2(

t (right) fitted to population of Slovakia. 
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Fig. 10. Logit mortality rates by age for the Czech republic averaged over years; observed 

(points ) and fitted by GLM (dashed line). 
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Fig. 11. Logit mortality rates by age for Japan averaged over years; observed (points ) and 

fitted by GLM (dashed line). 
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Fig. 12. Logit mortality rates by age for Hungary averaged over years; observed (points ) 

and fitted by GLM (dashed line). 
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Fig. 13. Logit mortality rates by age for Austria averaged over years; observed (points ) and 

fitted by GLM (dashed line). 
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Fig. 14. Logit mortality rates by age for Slovakia averaged over years; observed (points ) 

and fitted by GLM (dashed line). 


