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Nonclassical kernel functions in kernel procedures of statistical inference 

Aleksandra Baszczyńska1 

 

Abstract 

Choice of kernel function is one of the basic (besides choice of smoothing parameter) issue in kernel procedures 

concerning, not only the estimation of numerical and functional characteristics of a random variable, but also 

testing statistical hypotheses. There is an increasing number of applications where nonclassical kernel function is 

used. The paper will identify the conditions that are repealed for nonclassical kernel function and their basic 

properties will be presented. The results of simulation studies concerning the comparison of properties of kernel 

procedures with classical and nonclassical kernel function will be presented. This will allow the identification of 

areas where procedures of mathematical statistics with nonclassical kernel functions are optimal.  
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1. Introduction  

Kernel function is a device used in varied statistical inference procedures devoted to 

estimation (e.g. density, distribution function and regression function estimation) or to 

hypothesis verification in e.g. normality, independence and goodness-of-fit tests. In 

application of kernel inference methods it is necessary to make decisions about two 

parameters of the kernel method, where the choice of the smoothing parameter is treated as 

the crucial one. There are works (cf. Li and Racine, 2007; Baszczyńska, 2014) that discuss 

this problem widely indicating these methods of choice of smoothing parameter that may be 

regarded as optimal in determined research situation.  

For random sample nXXX ,...,, 21  chosen from population with unknown density function 

 xf , kernel density function estimator is defined as (cf. Rosenblatt, 1956; Parzen 1962): 
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where h  is smoothing parameter,  uK  is kernel function.  

In classical kernel approach, symmetric, second order kernels  uK  are used. They fulfil the 

following conditions:  
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The second order of kernel function  uK indicates that for this function, second moment is 

that one which is the first nonzero. 

The bias term (taking the assumption that  xf  is three times differentiable) of the 

classical kernel density estimator (with kernel function satisfying conditions (2)-(4)) is of the 

following form: 
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The analysis shows that reducing the bias can be done both by decreasing the value of 

smoothing parameter h  or using higher order kernel functions. In addition, applying kernels 

of order higher than 2 results in reducing mean squared error of kernel estimator. While 

weakening the assumption about the differentiability of  xf  to being twice differentiable 

leads to: 
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For the bias of order 
2h , kernel estimator (1) is asymptotically unbiased (Wand and Jones, 

1995). The dependence of the bias (6) on the true density function  xf  indicates that for 

large absolute value of the second derivative of  xf , the bias is large. It can be noticed in the 

regions where the curvature of the density is high. 

The generalization of conditions (2)-(4) for  th order kernel ( is integer) is the following: 
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Applying  th order kernel in kernel density estimator with taking the assumption that 

 xf  is  th order differentiable results in: 

      hOxfBias h ˆ .              (10) 

It means the possibility of reducing the order of the bias of  xf̂  from  2hO  to  hO  but in 

the situation when relaxing the restrictions that the kernel is a density function is acceptable. 

For example, when  uK  is a density function, second moment of the kernel fulfills: 02  , 

assuming that second derivative of unknown density function is continuous, square integrable 

and ultimately monotone. When this assumption is strengthened to continuous square 

integrable fourth derivative, for 02   kernel function does not need to be density function.  

It is worth noticing that the require that kernel function is symmetric implies that  is even.  

 

2. Higher order kernel function construction 

In the construction of kernel function, for example, of order  =4, kernel of order  =2 is used 

with setting up a polynomial in its argument and solving for the roots of the polynomial 

subject to desired moments constraints. 

For a second order Gaussian and Epanechnikov kernels given by the formulas, 

respectively: 
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the corresponding fourth and sixth order Gaussian and Epanechnikov kernels are the 

following:  
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As a generalization, the formula for the construction of the kernel function of higher order 

can be written in the following way: 

        uKuuKuKv
 

2

1
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2              (11) 

where  uK  denoting  th order kernel, is assumed to be differentiable.  

A detailed discussion on constructing kernels of these type and indicating pros and cons of 

them including issues connected with interpretations and plausibility are widely presented in 

literature (e.g. Wand and Jones, 1995). 

Another approach for constructing higher order kernels is based on second order Gaussian 

kernel. The higher order kernel is the following (Wand and Schucany, 1989, 1990): 
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where ,...4,2,0l ,  x  denotes Gaussian kernel. 

The approach of higher kernels can be extended to kernels for which  




 0l

l duuKu   

for all ,...2,1l . The example of kernels of this type called the infinite order kernels is the 

sinc kernel (Bissantz and Holzmann, 2007; Glad et al., 2007): 
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 .           (13) 

The sinc kernel is widely used both in the density estimation and regression estimation 

because of its optimality properties in terms of mean square error and mean integrated square 

error. But its good properties depends  in fact on the degree of smoothness of density. In 

addition, applying this kernel to samples of finite sizes does not guaranteed satisfactory 

results because of its only good asymptotic performance.  

 

3. Optimal kernels  

The optimality of kernel choice is the crucial issue in both theoretical and practical point of 

view. Because of the dependence between kernel function and measure of the estimation 

error, being regarded not only at a single point but also at the whole real line, the optimal 

measure of the error is discussed in the literature (Hansen 2005; Jones and Signorini, 1997). 

One of the approaches to this problem is based on a class of minimum of the asymptotic 

variance of kernel estimators. The minimum variance kernel is the solution of 

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duuK )(min 2
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subject to 
kvSK , , where 20  k ,   and k  are of the same parity and  
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The formula for the optimal kernels kvSK ,  is the following (cf. Horová, 2000; Horová et 

al., 2012): 
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It means that the optimal kernel is polynomial of degree k  restricted on the interval  1,1 . 

For even k  this polynomial is symmetric while for odd k  it is asymmetric. For example for 

2k , 0  we can get kernel function    1
4
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105 22  uuuK . All kernels functions are presented on  1,1 . 

Imposing some level of smoothness on kernel function by order of smoothness  , the class of 

smooth kernels can be determined (cf. Müller, 1984):  1,1,  CSK kv , 
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4. Results of the simulation study  

In the study density kernel estimators were analyzed to indicate the performance of density 

estimators depending on used higher order kernel functions. Samples of different sizes  

(n = 10, 20, …, 90, 100) were drawn from populations (with known density functions), next 

estimators od density functions (with different order of kernels) were calculated and 

compared with true density functions.  

In the simulation study fifteen populations, introduced by Marron and Wand (1992) are 

taken into regard. This is a collection of Gaussian mixture models used widely in works 

concerning analysis of kernel methods estimation. It represents variety of distributions  

including symmetric, asymmetric, unimodal and multimodal ones, for example, distributions  

(1)-(7) represent symmetric distributions (with Gaussian distribution), (1)-(5) unimodal 

distributions, (8)-(15) multimodal distributions, (12)-(15) asymmetric distributions. This 

collection allows to take into account populations with different sides and levels of 

distribution characteristics.  

When a sample is drawn from Gaussian standardized distribution, optimal kernels for 

2 results in unimodal density estimator. Even when parameter 1  (denoting 

noncontinuous kernel) is used. It is worth noticing that for values of   bigger than 2, the 

shape of the resulting estimators do not change, though along with the increasing values of the 

 ,  the values of smoothing parameter become bigger. It means that increasing parameter   

influences on the level of density estimator smoothing. Figures 1-3 present density estimators 

for different optimal kernels when n = 50 and smoothing parameter is chosen by reference 

rule. 
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Fig. 1. Kernel density estimator (sample from Gaussian density; Epanechnikov kernel –

optimal kernel with 0 , 2k , 0 ; n = 50; 84409.0h ).  
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Fig. 2. Kernel density estimator (sample from Gaussian density; optimal kernel with 0 , 

2k , 1 ; n = 50; 66346.0h ).  

 

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Kernel Estimate

 

Fig. 3. Kernel density estimator (sample from Gaussian density; optimal kernel with 0 , 

2k , 1 ; n = 50; 1355.1h ).  

 

The similar results can be obtained when samples are drawn from other unimodal 

distributions (1)-(5) from Marron and Wand collection and for other sample sizes. What is 

interesting that basing on even small samples the resulting estimators properly indicate the 

shape of the true density. For kernel parameter 2 (kernel function is bimodal and is not a 

density function) density estimator imitates the shape of kernel function. 

When samples from multimodal distributions are taken into account it is very difficult to 

find such kernel for which density estimator shows all significant features of distribution, 

including number of modes. Figures 4-6 shows density estimators for samples from 

distribution #15 (asymmetric and multimodal). 
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Fig. 4. Kernel density estimator (sample from density #15; optimal kernel with 0 , 2k , 

0 ; n = 50; 8532.1h ).  
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Fig. 5. Kernel density estimator (sample from density #15; optimal kernel with 0 , 2k , 

1 ; n = 50; 4566.1h ).  
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Fig. 6. Kernel density estimator (sample from density #15; optimal kernel with 1 , 3k , 

0 ; n = 50; 1045.2h ).  
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5. Empirical illustrations 

Regarded methods were applied to data sets concerning the employment of the largest 

companies in Central and Eastern Europe in 2013 (top 500 CCE, http://www.coface.com 

[22.03.2015]). The samples of various sizes were drawn and kernel density estimators were 

calculated. Figure 7 presents the illustrative estimators for sample size n = 50. 

 

Optimal kernel parameters 

0 , 2k , 0  0 , 2k , 1  1 , 3k , 0  1 , 3k , 1  
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Fig. 7. Kernel density estimators for real data sets (n = 50).  

 

Conclusion 

The main aim of using higher order kernels is to reduce the bias in kernel procedures of 

estimation. But this tool should be used very carefully. Simulation study shows that higher 

order kernels are very useful when distribution of population from which the sample is drawn 

is unimodal and symmetric. In the case of even slightly changes from this state results in 

density estimator which does not answer the requirements of the researches. Nonclassical 

kernels of higher order certainly broaden the applications of procedures based on kernel 

methods. It seems to be easier to have some additional information about population and use 

it in the process of choosing the proper kernel function in kernel inference procedures. The 

results of simulation study and the trial of application of regarded methods for real data 

indicate that further research should be referred to the influence between shape of kernel 

function and value of smoothing parameter.  
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