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Abstract 

Introduced on the turn of 21
st
 century, the axiomatic risk theory has developed around the notion of a coherent 

risk measure. In recent literature much attention has been given to the ES (expected shortfall) measure, which 

fulfils the set of coherency axioms and offers an important extension to the VaR model. As the relevant 

distribution is unknown, statistical evaluation of the ES model cannot use the natural measure of discrepancy 

between estimated and empirical ES. Instead hypothesis testing uses the regression approach, the saddlepoint 

technique or the goodness of fit of the truncated return density. The study presents parametric methods of 

statistical inference connected with ES measure and, through the simulation study, gives the comparison of the 

size and power of the considered tests. In order to reflect the stylized facts about real financial processes, 

simulation experiments are based on the GARCH processes. The power evaluation includes both homoscedastic 

and heteroskedastic models with incorrect variance parameters. 
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1. Introduction 

The development of the axiomatic risk theory and the inception of the concept of a coherent 

risk measure, on the turn of the 21
st
 century, gave impetus to introducing new risk models. In 

particular the models were based on the notion of expected shortfall (ES) whose idea is to 

inform about the possible loss in case of extreme events.  The wide variety of ES-based risk 

models created the need for relevant testing procedures. In the general case, the distribution of 

a sample average of extreme observations is unknown, thus classic statistical methods are 

unfeasible for ES value testing. Since scarcity of observations is inherent to extreme events, 

the statistical inference cannot be based on the central limit theorem, which requires large 

sample size.  

Since the beginning of the 21st century several approaches have been proposed for ES 

model backtesting or ES value verification. The censored normal likelihood function was 

employed in a test comparing empirical and estimated return distribution tail (Berkowitz, 

2001). Circumventing the problem of the unknown distribution, the saddlepoint test technique 

was introduced, which gives approximate p-values through the Taylor expansion of the 
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moment generating function (Wong, 2008). Finally the regression based approach, using the 

standard Fischer statistic, was proposed (Christoffersen, 2012).  

The aim of the paper was to evaluate statistical properties of available parametric ES-

testing procedures. Test assessment included their size and power. The analysis of the test 

properties was preceded by the overview of statistical inference methods proposed in the 

literature for ES models. We suggested a modification of a Christoffersen’s test, aimed at 

achieving approximate stationarity of the error term in the linear regression in case of 

stochastic process with a non-constant variance. The statistical properties of the considered 

tests were evaluated through the Monte Carlo method. In order to reflect the volatility 

clustering phenomenon, simulation experiments were based on the GARCH processes. 

The paper is comprised of five sections. In the second section we introduced the notion of 

expected shortfall and presented testing procedures dedicated to ES model evaluation or 

verification of ES value. We also proposed a modification of the regression-based ES test. 

The sections three and four present and discuss results of the Monte Carlo study of test size 

and power. The final section summarizes and concludes the paper. 

 

2. Parametric ES tests 

The idea behind ES measure is to give information about the possible loss in case of extreme 

events. Satisfying the postulates of subadditivity, monotonicity, positive homogeneity and 

translation invariance (Domański, 2011), it matches the axiomatic risk measure definition 

(Artzner, Delbaen, Eber & Heath, 1999). Let us consider the random variable X  defined on 

( , , ),P F  such that (max{0, }) .E X   Let (0,1)p  be a fixed real number. Then expected 

shortfall of the variable X , at the level of tolerance p , is defined as 

 
{ ( )}

1
( ) ( ) ( ( ))(X) ( ( )),p

p p

p X q X
ES E X q X P X q X p

p 
    1  (1) 

where (X)pq  is the upper p -quantile of X , given by ( ) inf{ : ( ) }pq X x P X x p   R   

(Acerbi, Taasche 2002). In case when X represents a rate of return and is a real random 

variable, the above definition is equivalent to ( ) ( | (X)).p pES X E X X q     

ES tests proposed in recent literature are dedicated to different statistical hypothesis and 

thus verify risk models through different aspects. The most restrictive procedure, referred to 

as exception magnitude test, verifies the goodness-of-fit of the return distribution (Berkowitz 

2001). Let us consider the random variable tR , representing the rate of return at time t , 



Proceedings of the 8th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

117 

0,...,T.t   Let 
tRF and ˆ

tRF  denote respectively the distribution of tR  and its estimate, 

0,...,T.t   In the exception magnitude test the hypothesis of the form 0
ˆ:

t tR RH F F  is 

verified through the first two moments. The test is based on the transformation  

 
1 1 ˆ(U ) ( ( ))

tt t R tZ F R    (2) 

where   denotes the normal distribution function. Under the null it holds that 

 . . .

( ) ~ (0,1), 1,2,...,
i i d

tZ N t T  (3) 

The transformation (2) ensures the normality of random variables, which allows for the use 

of the wide range of statistical methods based on normality assumption. Statistical verification 

of the condition (3) may take various forms and rely on moments, serial-correlation or 

normality testing. In particular, if we consider the linear regression 

 2

1( ) , ~ (0, )t t t tZ Z N      ň ň  (4) 

the hypothesis 0 : 0,  1,  0H       may be tested through the likelihood ratio, against the 

alternative 0 : 0,  1,  0H      . The regression (4) may additionally include higher order 

serial correlation or other exogenous variables.  

In order to design the test for ES model, it is proposed to focus exclusively on distribution 

tails, thus only extreme observations are used to check the condition (3). Let us define the 

auxiliary variable 

 1

*

1

0,  gdy ( )

,  gdy ( )

t

t

t t

Z p
Z

Z Z p





  
 

 
 (5) 

where p  denotes the tolerance level.  

The censored loglikelihood for parameters  ,  ,    and observations * * *

1 2, ,..., TZ Z Z  is 

given by 
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* *
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* * *
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1 1

1 1

 (6) 

The likelihood ratio test statistic takes the form  

 * * * * * *

1 2 1 2
ˆˆ ˆ2(log (0,1,0, , ,..., ) log ( , , , , ,..., )ES

B T TLR L Z Z Z L Z Z Z      (7) 

and is asymptotically 2

(3)  distributed (Berkowitz, 2001). 
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Another parametric ES testing procedure is based on the saddlepoint technique, which 

allows for calculating approximate p -values for the sum of random variables (Wong, 2008). 

It uses Taylor expansion of moment and cumulant generating functions. Originally this 

method was proposed for the iid normal series, however, through the transformation (2), it is 

possible to use it for a general class of stochastic processes.  

In opposite to the exception magnitude procedure, which checks the fit of the tail 

distribution, the saddlepoint test is aimed at verifying the hypothesis about the value of ES. 

Let us assume that the return variable tR  is iid normally distributed, with the density   and 

the cdf function   and let us denote tR R , 1,...,t T . In such case we can write 

( ) ( ),p t pES R ES R  1,...,t T  and formulate the relevant hypothesis as 

(0)

0 : ( ) ( ).p pH ES R ES R  Let us define the random variable X  as 

 ( )
( ) ( | ) , ,

( )
p p

p

P R x
P X x P R x R q x q

P R q


     


 (8) 

where pq  is the p -quantile of the standard normal distribution. Thus X represents the rate of 

return on condition that 
pR q  and, if p  is a chosen tolerance level, then ES can be 

expressed as (X)E . As the sample average X  is a natural estimator of ( )pES R , it is used 

as a test statistic S  in a ES-value test, i.e. S X  . 

Statistical inference requires the distribution of S  or at least the relevant p -value. Using 

the cumulant generating function ( )XK t  of the variable X , the density function of X can be 

written as 

 ( ( ) )
( ) ,

2
XN K it itx

X

N
f x e dt







 
 (9) 

Then 

 ( ( ) ) 11
( ) ( ) ,

2

p
X

q s i
N K t tx

Xx s i
P X x f u du e t dt

i

 
 

 
  

   (10) 

where s  is the saddlepoint satisfying ( ) .XK s x   If s  satisfies this condition, it is possible to 

approximate ( ),P X x  which serves as the p -value in the ES-value test. Through the 

Taylor expansion of the moment generating function it can be shown that  

 3

2
1 1

( ) ( ) ( )  dla ,
( )

1  dla ,

( ) p

p

N x q
P X x

x q

  
 


    

  
 

O
 (11) 
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where ( ),Xs NK s   ( ) 2 ( ( )),Xsgn s N sx K s    
xx   (Lugannani & Rice, 1980). In 

case of normally distributed variable the saddlepoint s  can be obtained as a solution to the 

equation 

 2

2
( )( )

( ) .
( ) ( )

t
pX

X

X p

q tM t
K t t e x

M t q t







   

 
 (12) 

The third ES test proposed in the recent literature uses linear regression to verify the 

potential of additional available random variables to explain ES value. Let us consider the 

regression  

 
1 1 1 1 1( ) ,  ( )where ,t p t t t t p tR ES R a b R q R         X ň  (13) 

t  are iid for 1,...,t T  and 
tX  denotes the set of explanatory random variables available at 

time t . The test hypothesis is formulated as 
0 : 0,H a   

0 : 0H b   or jointly as 
0 : 0H a b   

and can be verified by the standard Fischer statistic, denoted here as 
ChF  (Christoffersen 

2012).  

In the general case, the 
tR  and ( )tpES R variables, 1,...,t T , form stochastic processes, 

whose distributions change over time. In particular, when 
tR  represents a rate of return from a 

financial variable, it is characterized by a time-varying variance, which reflects volatility 

clustering. In case of time-varying variance, the stationarity assumption about the error term 

t  is not satisfied, which may translate into the discrepancy between the theoretical and 

empirical distribution of the test statistic. Thus statistical inference based on the regression 

(13) may involve serious type-one error. To reduce the error, taking account of time-

variability of 
tR  variance, we propose the standardization of the dependent variables in the 

regression (13) with respect the standard deviation. This procedure requires the estimate ˆ
t . 

After the standardization, the underlying regression takes the form  

 
1 1 * * *

1 1 1,  whe
( )

( )re ,
ˆ

t p t

t t t p t

t

R ES R
a b R q R



 

  

 
   X ň  (14) 

and 
*

tň  is the approximately stationary variable. As in case of 
ChF , the modified test 

*

ChF , 

based on the regression (14), uses the Fischer statistic. 

 

3. Test size evaluation 

The size and power evaluation experiments were designed in a way that they reflected 

volatility clustering phenomenon, which hinders volatility prediction and is commonly 
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regarded as a key issue in risk control. Volatility clustering was represented through inclusion 

of a GARCH process in the data generating algorithm. For the ES test size assessment the tR  

values were generated from the GARCH(1,1) process: 

 

2 2 2

1 1 1 1 1

, ~ (0,1),

,

t t t t

t t t

R Z Z N

R



     



  
 (15) 

with parameters 1 0,05,   0,14,   
1 0,85 

2
. ES values were calculated as expected 

values of 
tR  on the interval ( )), (p tq R , 1,2,...,t T

3
.  

In order to obtain  tU  values, 1,2,...,t T , in Berkowitz ES

BLR  test, we transformed 
tR  

data according to the formula (2), using the true parameters of the data generating process 

(15). The explanatory variables in the 
ChF  and *

ChF  tests included five lags of 
tR  and past five 

ES predictions. The tests were conducted for the 5% significance level. The rejection 

frequencies were computed for sample sizes 250,500,750,1000T   over 10000 replications.  

Rejection frequencies obtained under the null for ES

BLR and S  tests were close to the 

nominal level of 5% for all series lengths (Tab. 1). The size estimates computed for the 

regression based test 
ChF  and the modified version *

ChF  showed that the proposed 

standardization allowed for significant reduction of the type-one error. The rejection 

frequencies for the 
ChF  test more than doubled the nominal level of 5% (Tab. 1). Moreover 

the results gave no evidence of convergence to the theoretical Fischer distribution. In case of 

the modified test *

ChF  the rejection frequencies approximately equalled the nominal level and 

the shape of the statistic distribution for 250 observation got close to the theoretical 

distribution function (Fig. 1, 2). 

 

Test 
Series length 

250 500 750 1000 

ES

BLR  0.052 0.053 0.051 0.053 

S  0.047 0.054 0.049 0.052 

ChF  0.121 0.203 0.265 0.309 

*

ChF  0.050 0.050 0.049 0.049 

Table 1 Size estimates of ES tests. 

                                                           
2
 The parameter values were fixed on the basis of the initial study for six stock market indices (Malecka, 2011). 

3
 More about the estimation of ES value can be found in recent literature (Pietrzyk, 2004, Trzpiot, 2010). 



Proceedings of the 8th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 

121 

 

 

Fig. 1. Empirical and theoretical distribution functions of 
ChF  test for 250 observations. 

 

 

Fig. 2. Empirical and theoretical distribution functions of *

ChF  test for 250 observations. 

 

4. Test power evaluation 

For the power comparison, we assumed the data generating process in the form of the  

GARCH(1,1) model given by (15), while ES estimates were obtained from processes with 

incorrect parameters. We based the power evaluation on two variants of the simulation 

experiment. In the first stage the ES values were computed from the homoscedastic model 

with parameters fixed at levels compliant with the unconditional expectation and variance of 

the data generating process. The resulting failure series was then characterized by the 

appropriate overall failure rate but the exceedances were serially correlated. 

In the second stage the ES values were obtained from the model, which involved time-

variability of the return distribution, but with systematically underestimated volatility. We 

used GARCH(1,1) with parameters chosen to obtain the standard deviation on levels of 

0.9 ,t  0.7 t  and 0.5 ,t  where 
t  denotes the true parameter value.  

Since the testing procedures ES

BLR  and *

ChF  presented in the paper are based on asymptotic 

distributions, the Monte Carlo test technique was employed for the power comparison. Based 
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on simulated distributions, it provided the empirical quantiles for a given finite sample size 

and guaranteed the exact test sizes. Hence the power estimates were comparable among 

different tests. The significance level in the simulation study was set to 5%. The rejection 

frequencies were computed for sample sizes 250,500,750,1000T   over 10000 replications. 

In the first step of the study, the ES values were obtained from the homoscedastic model, 

incompliant with the time-varying data generating process. The highest rejection frequencies 

were observed for the ES

BLR test, whose construction is based on the discrepancy between the 

empirical and theoretical tail of the return distribution. For the series of 250 observations the 

estimated power of the test nearly reached 70% and it went up to 96% for 1000 observations. 

The saddlepoint test S  rejection frequency for 250 observations was much lower and 

approached 30%, however it grew to a level of over 60% for the longest sample size. 

 

Test 
Series length 

250 500 750 1000 

ES

BLR  0.69 0.84 0.93 0.96 

S  0.29 0.44 0.56 0.63 

*

ChF  
0.08 0.14 0.17 0.21 

Table 2 Power estimates of ES tests based on homoscedastic process. 

 

The lowest rejection frequencies were observed for the regression based test *

ChF . The 

power estimates for the sample size of 250 observations did not exceed 10%. The results 

showed a rising tendency with extending the sample, however for the longest series of 1000 

observations the estimated power was still approximately as low as 20%. 

The second step of the simulation study allowed for a more detailed power comparison, 

based on experiments where ES estimates were obtained from a model that involved 

parameter time-variability, however the volatility parameters were undersized. Similarly to 

the previous experiment, the results showed highest power estimates for the ES

BLR  test. The 

rejection frequencies for this test were over 60% in all experiment variants, for all sample 

sizes. In case the longest series and standard deviation set to 50% of its true value, the ES

BLR  

test gave 100% rejection frequency.  

The estimated power of the saddlepoint test S , for the series of 250 observations, was 

between 30% and 90%, depending on the degree of parameter underestimation. There was a 
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clear growth in the power estimates with lengthening the time series. For 500 observations the 

rejection frequencies were over 50% and in experiment with standard deviation of 70% of its 

true value – over 70%. As in case of the  ES

BLR  test, for the longest series and standard 

deviation set to 50% of its true value, the S  test gave 100% rejection frequency. 

 

Test 
*

t
  

Series length 

250 500 750 1000 

ES

BLR  

0,9 t  0.61 0.74 0.82 0.85 

0,7 t  0.62 0.79 0.85 0.90 

0,5 t  0.89 0.97 0.99 1.00 

S  

0,9 t  0.34 0.51 0.64 0.71 

0,7 t  0.55 0.74 0.85 0.91 

0,5 t  0.87 0.97 0.99 1.00 

*

ChF  

0,9 t  0.05 0.05 0.05 0.05 

0,7 t  0.06 0.04 0.05 0.05 

0,5 t  0.06 0.04 0.05 0.05 

Table 3 Power estimates of ES tests based on GARCH process with undersized variance. 

 

*

ChF  test rejection frequencies were below 10% for all series lengths. Thus the results, 

based on the GARCH-type experiments, gave evidence of a very low power of this test 

against the first order autoregression alternative. 

 

Conclusion 

The study presented in the paper was dedicated to evaluation of statistical properties of the 

parametric ES tests. The results showed therefore that type one errors for the exception 

magnitude test ES

BLR and saddlepoint test S , assuming series length of at least 250 data, were 

compliant with the assumed significance level. 

For the regression based test ChF  we proposed a modification, which takes account of the 

time-varying variance of the return distribution. To reduce the type one error, resulting from 

violation of the stationarity assumption about the error term, we conducted the standardization 

of the dependent variables. The size estimates computed for the test ChF  and the modified 
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version *

ChF  showed that the proposed standardization allowed for significant reduction of the 

type-one error.  

The power comparison showed that the highest rejection frequencies under the alternatve 

were observed for the ES

BLR test, whose construction is based on the discrepancy between the 

empirical and theoretical tail of the return distribution. The saddlepoint test S  rejection 

frequencies were lower, however there was a clear growth in the power estimates with 

lengthening the time series. The lowest rejection frequencies were observed for the regression 

based test *

ChF . Despite a rising tendency with increasing the sample, the study gave evidence 

of a very low power of this test against the first order autoregression alternative, even in case 

of longest considered time series. 
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