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Abstract  

Multivariate location and scatter measures are working horses for a variety of statistical procedures used within the 

modern Economics. With appearance of new phenomena related to very big data sets, online inference and data 

processing – a computational complexity of the procedure is pointing on the foreground of scientific researches. Due 

to existence of outliers in the economic data sets, robust statistical procedures are used more and more often. 

Unfortunately, a great part of robust estimators of the multivariate location and scatter are computationally and/or 

memory very intensive and do not allow for the recursive calculation in a similar manner as least squares estimators. 

In this paper we study possibilities of overcoming these substantial computational difficulties. We focus our attention 

on three representative estimators: minimum covariance matrix determinant (MCD), Orthogonlized Gnanadeskian/ 

Kettering estimator (OGK) and the general depth weighted location and scatter estimator (DIS). 
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1. Introduction  

The sample mean vector (MV) and the sample covariance matrix (Cls) have been the standard 

estimators of location and scatter in the multivariate statistics. They are affine invariant and 

highly efficient for normal models. Moreover, both the MV and the Cls allow for a distributed 

and recursive calculation what is especially important for the very big data sets or in case of a 

streaming data analysis (see Anagnostopuoulos et al., 2012). 

 Unfortunately, economic data sets very often contain outliers or inliers of a various kind, what 

makes the MV and the Cls useless due to their extreme sensitivity to atypical observations. 

Although, there are known good robust alternatives for the MV and the Cls, these alternatives are 

treated as very computationally and/or memory demanding. This computational and/or memory 

complexity limits an application of the robust measures in data stream analysis or in a mining in 

very big data sets. The existing algorithms for robust measures calculation are considered as 

being too complex for online credit card fraud detection, or the financial marketss monitoring.  
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 It is well known that the usual sample mean and sample variance allows for the recursive 

calculation. Similarly for the sample covariance 
1
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 Equation (1) lead to a naïve recursive algorithm for the Cls. The algorithm can be improved 

using recursive least squares algorithms which facilitate the revision estimates when new 

observations became available. Theory of recursive least squares estimation was first explored by 

Gauss in his original tract on the method of least squares (see Durbin and Koopman, 2001). 

A possibility of the recursive calculation of the robust descriptive measures is a subject of very 

intensive studies nowadays. For a great part of robust measures an answer is negative due to 

“influential majority” ideas which lie on the ground of the concept of robustness. This 

“influential majority” may dramatically change with an arrival of new observation.   

We understand robustness of the estimator in terms of the influence function (IF) and the finite 

sample breakdown point (BP) – for further details see Maronna et al. (2006). The BP point serves 

as a measure of global robustness, while the IF function captures the local robustness.  

 The rest of the paper is organized as follows: in Section 2, three representative robust location 

and scatter estimators are briefly described. In Section 3, results of comparisons of the estimators 

are presented. The paper ends with conclusions, description of the future expected results and 

references. 

 

2. Robust estimators of location and scatter 

The first affine equivariant estimator of multivariate location and scatter which attains a very 

high BP was the Stahel – Donoho estimator. Nowadays, there are many robust alternatives for the 

MV and Cls. Many classical high BP point estimators are commonly treated as inefficient at 

normal populations, and computationally and/ or memory very expensive. 

 For effective application of the robust location and scatter estimators in streaming data 

analysis, their recursive and/or distributed formulation are needed (see Muthukrishan, 2006) 

Below we briefly describe two representative robust estimators and compare them with new 

robust estimator using so called data depth concept. Further details can be found in Rousseeuw 

and Van Driessen (1999), Maronna and Zamar (2002) and Todorov and Filzmoser (2009). 
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2.1. Minimum Covariance Determinant Estimator 

For a data set  1,...,
n

nX XX  in d  the Minimum Covariance Determinant (MCD) is defined 

by the subset  
1
,...,

hi iX X  of h  observations, whose covariance matrix has the smallest 

determinant among all possible subsets of n
X  size h . The MCD location and scatter estimate 

TMCD and CMCD are given as the arithmetic mean and a multiple of the sample covariance matrix 

of the subset: 

 

1

1 h

MCD ij

j

T
h 

 x  (2) 
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where the multiplication factors 1c (consistency correction factor) and 2c  (small sample correction 

factor) are selected so that MCDCov  is consistent at the multivariate normal model and unbiased at 

small samples. A recommendable choice of h  is ( 1) / 2n d     because then the BP of the MCD 

is maximized, here   z  denotes the integer part of z  which is not less than z . 

 The MCD estimator and all other known affine equivariant high-breakdown point estimators 

are solutions to a highly non-convex optimization problems. Their computation needs nontrivial 

algorithms. Due to Rousseeuw and Van Driessen (1999), the fast algorithm for its computation is 

known. The algorithm is very fast for small data sets but is not feasible for the big data sets. A 

crucial element comprises of the determinant calculation for subsamples. Using well known LU or 

Cholesky decomposition relates to complexity of 3( )O d for the determinant and ( )2O nd for the 

covariance matrix.  

 

2.2. Orthogonlized Gnanadeskian/Kettering estimator  

Very often in practice, it suffices for the estimator to be invariant with respect to orthogonal 

transformations of the data. The scarifying the affine invariance may lead to the improvements in 

terms of its computational complexity.  For a pair of random variables jY  and kY , and a standard 

one-dimensional dispersion measure ()  , the covariance ijc between them can be expressed as: 
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 Calculation the covariance matrix [ ]jkc  using (4) and robust measure () , e.g., the median of 

absolute deviation from the median   MAD Med Z Med Z  leads to 

Gnanadesikan/Kettenring scatter estimator. This estimator may not necessary be positive 

symmetric. Due to Maronna and Zamar (2002) its improved version is known as Orthogonalized 

Gnanadesikan/Kettenring estimator. Its computational complexity in the form (8) for   taken as 

the MAD is 2( log( ))O d n n . It is easy to notice that this estimator allows for the distributed and 

parallel calculation. 

 

2.3. General depth weighted location and scatter estimators 

Data depth was originally introduced as a way to generalize the concepts of median and quantiles 

to the multivariate framework. A depth function ( , )D F  associates with any dx  a measure 

( , ) [0,1]D F x  of its centrality w.r.t. a probability measure FP  over d  or w.r.t. an empirical 

measure nF P  calculated from a sample n
X . The larger the depth of x , the more central x  is 

w.r.t. to F  or nF . The most celebrated examples of the depth known in the literature are Tukey 

and Liu depth (for further details see Zuo, 2004). For our purposes, the most interesting depth 

seems to be the weighted pL  depth. The weighted pL  depth ( ; )pWL D Fx  of a point 

dx , 1d   being a realization of some d   dimensional random vector X  with distribution F ,  

is defined as: 

                                               
1

( ; )
1 ( )

p

p

WL D F
Ew


 

x
x X

 ,                                                   (5) 

where w  is a suitable weight function on [0, )  , and 
p

  stands for the pL norm (when p=2 we 

have usual Euclidean norm). We assume that w  is non-decreasing and continuous on [0, )  with 

( )w   , and for , da b satisfying ( ) ( ) ( )w a b w a w b   . Examples of the weight 

functions are: ( )w x a bx   , , 0a b   or ( )w x x . The empirical version of the weighted pL  
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depth function is obtained by replacing distribution F  of X  in ( ) ( ) ( )
p p

Ew w x t dF t  x X  

by its empirical counterpart calculated from the sample 1{ ,..., }n

nX x x   
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 A point for which depth takes the maximum is called the pL median (multivariate location 

estimator), the set of points for which depth takes value not smaller than [0,1]  is multivariate 

analogue of the quantile and is called the    central region, ( ) { : }d pD F WL D( ,F)   x x . 

Fig. 1 presents the L
2
 sample depth function contour plot obtained using DepthProc package (see 

Kosiorowski et al., 2013). 

 The weighted pL  depth function in a point, has the low BP and unbounded IF. On the other 

hand, the weighted pL depth induced medians (multivariate location estimator) are globally robust 

with the highest BP for any reasonable estimator. The weighted pL medians are also locally 

robust with bounded influence functions for suitable weight functions. Unlike other depth 

functions and multivariate medians, the weighted pL  depth and medians are easy to calculate in 

high dimensions. The price for this advantage is the lack of affine invariance of the weighted pL  

depth and medians, respectively. 

  

Fig. 1. Sample L
2
 depth contour plot 

(DepthProc package). 

Fig. 2. Boxplots for Fröbenius norm of differences 

between true and estimated covariance matrices 

using the MCS, the OGK and the DIS. 

 

 Using weighted pL depth one can define a depth-weighted mean with weighted pL depth: 

 
1 1( ) ( ))p pL F w WL D( ,F dF( ) w (WL D( ,F))dF( ) x x x x x  (7) 
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 Subsequently, a depth-weighted scatter estimator based on weighted pL depth is defined as  

 ( ))
( )

T p

2

p

2

( - L(F))( - L(F)) w WL D( ,F dF( )
S F

w (WL D( ,F))dF( )





x x x x

x x
, 

                           (8) 

where 
2 ( )w   is a weight function that can be different from 

1( )w  . 

 Note that ( )L   and ( )S   include multivariate versions of trimmed means and covariance 

matrices. Their sample counterparts take the forms: 
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 
 X X X X X , 

(10) 

where id  are sample depth weights,  1 2( ) ( )w x w x x  . 

 Computational complexity of the scatter estimator crucially depend on the complexity of the 

depth used. For the weighted pL depth we have 2 2( )O d n n d  complexity and good perspective 

for its distributed calculation (see Zuo, 2004).  

 

3. Comparison of the estimators 

In order to compare properties of the estimators we performed simulations using various models 

differing w.r.t. their dimensionality, and involving departure from i.i.d. setting. Let X  has a 

distribution F  with a location vector m and a scatter matrix  .  Let LOCT  and SCT  denote the 

location and the scatter estimators calculated from a sample n dX . In the simulations, we 

compared the estimators by means of the 1E  and 2E  criteria defined as: 

 
1 LOC EUC

E T m  ,  2 SC FR
E T   (11) 

where 
2

( )T

ijFR
a tr A A A is the Fröbenius norm , and 

EUC
  is the Euclidean norm. 

 Fig. 2 presents boxplots showing the Fröbenius distances between true population covariance 

matrix and the estimates obtained by means of the MCD, the OGK and the DIS. Samples 

consisted of 150 obs. from i.i.d. two-dimensional Student distribution with 3 degree of freedom.  

In terms of unbiasedness and dispersion, the OGK performed the best, the DIS and the MCD 

performed similarly. Fig. 3 presents results of 500 simulations from two-regime i.i.d stream 
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model consisted of two regimes differing w.r.t. their scatter (for the data stream issues see 

Muthukrishan, 2006; Kosiorowski, 2013). 

 

REG1(90%) 

+REG2(10%) 

REG1(80%) 

+REG2(20%) 

REG1(70%) 

+REG2(30%) 

REG1(60%) 

+REG2(40%) 

MCD 
6.06 3.82

3.82 9.69

 
 
 

 F=1.2 
6.31 3.12

3.12 8.63

 
 
 

F=2.7 
6.61 2.37

2.37 7.62

 
 
 

 F=4.2
6.93 1.59

1.59 6.61

 
 
 

 F=5.7 

OGK 
3.33 2.11

2.11 5.35

 
 
 

 F=6.1 
3.43 1.73

1.73 4.78

 
 
 

F=7.4 
3.55 1.32

1.32 4.21

 
 
 

 F=8.1
3.69 0.91

0.91 3.64

 
 
 

 F=8.8 

DIC 
6.70 3.45

3.45 9.83

 
 
 

 F=1.7  
7.05 2.88

2.88 9.13

 
 
 

 F=2.9 
7.41 1.73

1.73 8.39

 
 
 

 F=4.0 
7.69 1.73

1.73 7.62

 
 
 

 F=5.1 

Cls 








45.184.7

47.72.12
F=10.9  

12.50 6.25

6.25 15.76

 
 
 

F=9.7 








76.1521.5

21.55.13
F= 9.7

13.85 3.94

3.94 14.21

 
 
 

F=8.7 

Table 1 Performance of the MCD, the OGK, the DIS and the CLS scatter estimators. 

 

 We analyzed a performance of the MCD, the OGK, the DIS, and the Cls  by calculating them 

from moving windows consisting  90% ,80%, 70%, 60% obs. from the first regime, and 10%, 

20%, 30%, 40% obs. from the second regime of the stream. The stream was generated from two 

i.i.d. 2D Student distributions with 3 degree of freedom with the same location but differing w.r.t. 

the scatter matrices: 

1

6 4.5

4.5 10.5
S

 
  
 

,  2

6 1

1 2
S

 
  

 
. 

 The results are presented in tab. 1. Above each of the matrices, the mean Fröbenius distance 

between estimate and the dispersion matrix of the first regime is placed (F). 

 For MCD, OGK, and DIS we observed similar directions of the changes in the estimates 

values. The changes of the DIS estimator were “more discontinuous” manifesting in increase of 

the mean Fröbenius distance from 2.86 to 4. The smaller BP of the DIS estimator, seems to be 

here an advantage. The performance of Cls in the considered situation was non-informative. In 

case of the location estimator, both  pL  median and proposed estimator (10) outperformed the 

MCD in terms of a computation time. A memory complexity of the OGK without the 

orthogonalization does not exceed 2( )O n d . For the MCD we obtain 2( ( ))O k h d , where h 
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denotes subsample length, k denotes the number of starting subsamples. Finally for the DIS, its 

memory complexity equals 2( )O n d . The memory complexity of L
p
 depth equals only (1)O .  

In order to investigate a performance of the estimators we  used real financial data consisted of 

high-frequency quotations of 20 companies belonging to Dow Jones Industrial index. The 

considered dataset involved a period from April 2008 to June 2013.  

 In the first part of the study we calculated time of the algorithm execution for data sets 

differing with respect to their size. Time of calculation of the OGK and the MCD estimators even 

for a data set consisting of 100000 observations was relatively short. It is worth noticing that 

MCD estimator is much faster than OGK estimator, which is by default used for very big data 

sets within “reference” package {rrcov}. Calculation of the DIS estimator is much slower than 

for the MCD and OGK estimators.  

 In order to check if the considered estimators lead to similar results we calculated the 

covariance matrices for data sets representing consecutive months (63 months), and next we 

calculated Fröbenius distances between them. Fig. 3 presents the results. Apart from a period 

from the four quarter of 2008 to the second quarter of 2009 – all the estimators indicated the 

similar scatter. Further we compared the MCD, the OGK and the DIS with the classical algorithm 

of the Cls estimation. The results are presented on the Fig. 4. The closest results to the Cls were 

obtained using the OGK. We observed significant deviations in case of the DIS. The distance 

between the OGK and the MCD to the Cls retained on the constant level but the distance between 

the DIS and the Cls differed significantly. In the period of the crisis of 2008 year, the DIS 

estimator significantly departed from the rest. It is a very interesting result because in this period 

started the financial crisis.  Fig. 5 presents the correlation matrices visualization prepared basing 

on the MCD, OGK and DIS estimates. The DIS based correlation matrix indicates weaker 

correlations for the particular instruments than the OGK and the MCD estimators. 

 

Conclusions 

A great part of multivariate robust measures is not computationally feasible for the real 

application in the online Economy. The analysis of the empirical example results to a conclusion 

that the DIS cannot compete with the OGK and the MCD in the context of analysis of very big 

data sets. The DIS enables however for the parallel calculation, what can improve its properties. 

Both the MCD and the OGK however enable for the parallel calculation too. We can recommend 
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however the MCD and the OGK for data stream analysis. A calculation of the covariance matrix 

for 20 stocks quoted every 5 minutes in a 5 years period takes about 5 seconds on the standard 

PC produced in 2013 year. 

 

 
 

Fig. 3. The Fröbenius distance between the 

scatter matrices calculated for 63 consecutive 

months 

Fig. 4. The Fröbenius distance between the 

OGK, MCD the DIS scatter matrices calculated 

for 63 consecutive months and the Cls 

 

Fig. 5. Visualisation of the OGK, the MCD and the DIS estimates for 20 stocks from Dow Jones 

Industrial in the September of 2008 year. 

 

 The observed behavior of the DIS in the beginning of the financial crisis of the 2008 year 

seems to be especially interesting. The DIS is robust but is not very robust in terms of the BP. 

The DIS alerts us earlier as to the scatter of the stream change than the MCD and the OGK. 

The presented in this paper estimators do not allow for their recursive calculations due to a fact 

that they critically depend on the influential majority of the data. This majority can dramatically 

change with an arrival of new observation. 
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