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Abstract 

In kernel density estimation the researcher needs two parameters of kernel method: the kernel function and 

smoothing parameter called as bandwidth. The special care is required in choosing the last one. Too small value 

of bandwidth results in spurious peaks in the density estimator. Too large value makes it oversmoothed.  

 In paper, a useful technique known as SiZer map is presented. This technique helps in determining whether 

peaks in density estimator are significant or not. The density kernel estimator is viewed thought the different 

level of smoothing. The SiZer map can be used by non-experts and speeds the procedure of deciding which 

features are signals and which are noise. The procedure of testing the hypothesis about significance of this type 

is described. The applications of SiZer map is illustrated by analysis of carbon dioxide emission in countries 

made by density function estimation.   
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1. Introduction  

Density estimation is one of the mostly used way of identifying and describing the structure of 

data on the basis of the random sample. Nonparametric methods, especially kernel density 

estimation, becomes more and more popular in the analysis of, among others, economic 

variables (Li and Racine, 2007). In the process of density function estimation by kernel 

method, the researcher has to determine two parameters of the method: kernel function and 

smoothing parameter. Some kernel functions are presented in literature but the influence of 

this parameter on the results of density estimation is regarded not to be significant. The 

smoothing parameter, known as the bandwidth, which determines the level of smoothing in 

the process of estimation, plays an important role in resulting estimator. So, the ways of 

choosing the appropriate value of smoothing parameter in the process of estimation are taken 

into regard in, for example, in Silverman (1996). The classical approach to kernel density 

estimator means regarding one value of smoothing parameter in kernel density estimation that 

results in a single estimated function. Even when a good choice of smoothing parameter is 

made, misleading impression can be created due to the bumps of the estimator. The problem 

of assessing if these bumps are “really there” and avoiding spurious noise should be regarded 
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in the data structure analysis. In technical analysis this problem means determining which 

structure is signal and which is noise. 

The SiZer map is a graphical tool used in analyzing the visible feature representing 

important underlying structures through different levels of smoothing what means that the 

estimation of kernel density function is made and analyzed for different values of bandwidths. 

The idea of considering a family of smooths can be found in scale space theory in computer 

science. Chaudhuri and Marron (2000) explored this problem in a statistical point of view. 

The bump in the structure of curve like density function is characterized by going up one 

side and going down the other. The bump is a zero crossing of the derivative and it is 

statistically significant when the derivative estimate is significantly positive to the left and 

statistically negative to the right. The name of SiZer map stems from assessing the SIgnificant 

ZERo crossing of the derivative. Compering with the classical approach there are two main 

differences. Firstly, SiZer studies a very wide range of bandwidths instead of looking at just 

one. Secondly, instead of focusing on a “true underlying curve” in classical, SiZer “has” 

looking at the true curve viewed at varying bandwidths what can lead to recovering the 

significant aspects of the underlying function for different levels of smoothing. Benefits are 

evident - it speeds up the process of deciding which features are “really there” and makes this 

type of inference readily do-able by non-experts.  

  

2. Kernel method 

Kernel method can be applied in different areas: in density estimation, regression estimation, 

classification and pattern recognition.  

In density function estimation, kernel method, known as Parzen-Rosenblat method, is one 

of the mostly used procedures in assessing the characteristic features of random variable. 

A comprehensive review of kernel density methods can be found in Silverman (1986) and Li 

and Racine (2007). Kernel density estimator is defined in the following way (Rosenblatt 

1956; Parzen 1962): 
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where nXXX ,...,, 21  is the random n-element sample, h  is the smoothing parameter, )(K  is 

the kernel function.  

Kernel functions, which are in most cases density functions, are presented, among others, 

in Domański and Pruska (2000). The most widely used is Gaussian kernel which is density 
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function of normal standardized distribution. When this kernel is used in kernel density 

estimation, the number of zero crossing of the derivative estimate is always a decreasing 

function of smoothing parameter h . Because of this feature just Gaussian kernel is used in 

SiZer map. 

In classical approach of kernel density estimation the researcher has to make a decision 

which value of smoothing parameter h  is appropriate in particular estimation. Smoothing 

parameter controls, like in other nonparametric curve estimators (for example histogram), the 

level of smoothness. Small value of h  leads to jagged estimate, while big value tends to 

produce over smoothed estimator. In literature some procedures indicating this value are 

presented, such as Silverman’s rule of thumb, cross-validation, plug-in method and their 

modifications. In SiZer map the smoothing parameter range, instead one value like in classical 

approach, is taken into consideration.  

 

3. Testing hypotheses in SiZer map 

In SiZer map we have the possibility of regarding not only one density kernel estimator 

constructed for a particular kernel function and particular value of smoothing parameter but 

the family of density estimators with Gaussian kernel function and the range of smoothing 

parameter. The family of smooth curves is the following:  

     maxmin ,:ˆ hhhxfh   (2) 

where: Bh 2min  , B is the binwidth, minmaxmax xxh  .  

 The case of   ,0h  is also regarded. 

The family (2) represents different structures of the curve under different levels of 

smoothing and can be called as scale space surface. While   xfE h
ˆ  is the true curve viewed 

at different scales of resolution.  

When a peak is observed, before the peak the sign of derivative is positive, at the point of 

maximum the derivative is equal to 0, after peak the derivative is negative. When a valley is 

observed before the valley the sign of derivative is negative, at the point of minimum the 

derivative is equal to 0, after valley the derivative is positive. Hence, peaks and valleys are 

determined by zero crossing of the derivative.  

In SiZer map Gaussian kernel function is used: 
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because in kernel density estimation with this kernel function, the number of zero crossings of 

derivative (number of peaks) decreases monotonically with the increase of the bandwidth 

(Silverman 1986). Chaudhuri and Marron (2000) show that in kernel regression with Gaussian 

kernel function, the number of zero crossings of the m th order derivative decreases 

monotonically with the increase of the bandwidth. 

In SiZer the following hypotheses are regarded: 
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 (Chaudhuri and Marron, 2000). The test is done independently at each 

location in the scale space. 

In the calculation of the quantile q  the following fact is used: if two locations 1u  and 2u  

are sufficiently far apart, relative to h  then  1
ˆ ufh  and  2

ˆ ufh  are independent which implies 

that  1
ˆ ufh
  and  2

ˆ ufh
  are independent. The simultaneous confidence limit problem is then 

approximated by m  independent confidence intervals. The estimate for m  is calculated 

through an  hxESS ,  estimated effective sample size: 
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When kernel is uniform  hxESS , is simply the number of data points in the window of 

width h centered at x . For Gaussian kernel the data points are downweighted according to the 

height of the kernel function. Next m is chosen to be the number of independent blocks 

( m confidence intervals) of average size available from a dataset of size n :  

  
 hxESSavg

n
hm

x ,
 . (6) 

The  hxESS ,  can also be used to indicate where the smooth is based on sparse data by 

highlighting the regions where   0, nhxESS  . Chaudhuri and Marron (1999) suggested that 
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50 n . Therefore the calculation of block size  hm  is modified to avoid problems with small 

 hxESS ,  to: 

  
 hxESSavg

n
hm

hDx ,

 , (7) 

where   5,:  hxESSxDh  , is the set of locations where the data are “dense”. 

Assuming independence of  hm  blocks of data the approximate simultaneous quantile for 

a   %1001   confidence interval is: 
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For the derivative estimate  xfh
ˆ  the confidence limits, depending on h , can be 

constructed: 
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where: q  is appropriate quantile, and calculation of   xfsd h



ˆ  is based on the fact that the 

derivative estimator  xfh
ˆ  is an average of the derivative kernel functions: 
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where  nkks ,...,1

2  is the sample variance of nkk ,...,1 .  

On the vertical axis in the SiZer map  is x  and on the horizontal axis is h . From the SiZer 

map it is possible to present the information, for given x  and h , about the positivity and 

negativity of the derivative of    duuf
h

xu
K

h
xfh 












 


1
. The following color codes are 

used: 

1. blue,  xfh
ˆ  is significantly increasing, (zero is greater than the upper confidence limit), 

2. red,  xfh
ˆ  is significantly decreasing (zero is less than the lower confidence limit), 

3. purple,  xfh
ˆ  is not significantly increasing or decreasing (zero within confidence limits), 

4. grey, indicates regions where the data are too spare to make statements about significance, 

the effective sample size is less than 5. 
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In SiZer map the 10log scale is used for h in the display (it gives smooths that are more 

equally spaced). The dotted white curves show effective window widths for each bandwidth, 

as intervals representing h2 ( 2 standard deviations of the Gaussian kernel). 

There is a variation of SiZer map named SiCon map (Significant CONvexity), where 

statistical inference is made taking into account second derivative and regions of statistically 

significant curvature are highlighted (special color code is used: cyan – significant concavity, 

downward curvature; orange – significant convexity, upward curvature; green – no significant 

curvature).  

 

4. Application of SiZer map  

In literature there are examples of using the Sizer map in analysis of economic data (Zambom 

and Dias, 2012), medical data (Skrovseth, Bellika, Godtliebsen, 2012) or geochemical data 

(Rudge, 2008).  

The application of SiZer map is illustrated in the analysis of the carbon dioxide emission in 

countries in the world. The data was downloaded from the data bank 

(http://data.worldbank.org/topic/environment [25.02.2014]). Total carbon dioxide emission 

(in thousand metric tons) is available for 214 countries in the world for 1960-2010. The last 

year was taken into account in the research. Samples of sizes 10, 30 and 50 countries were 

chosen and on the basis of these samples the SiZer maps are obtained using the codes in 

Matlab. Figure 1 shows the results where the kernel density estimator for different values of 

smoothing parameters is presented (top) and the SiZer map (bottom) for sample size 10.  

In the SiZer map blue shows regions of significant positive  xfh
ˆ , red regions of 

significantly negative  xfh
ˆ , purple regions where  xfh

ˆ  is not significantly increasing or 

decreasing and grey regions where it is not possible to make inference. For large values of 

bandwidth the density function significantly increases, then there is a region where SiZer is 

unable to distinguish and then there is a region where the density function significantly 

decreases. The SiZer map results in grey region for small values of bandwidth, it means that it 

is not possible to separate signal and noise. This situation is closed connected with the sample 

size. For such small sample size the process of estimating the density function is rather 

difficult.  

http://data.worldbank.org/topic/environment
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Fig. 1. SiZer map for n = 10.  

 

Figure 2-3 presents SiZer map for bigger sample sizes. It should be noted that when sample 

size is increasing, the grey region becomes smaller.  
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Fig. 2. SiZer map for n = 30.  
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Fig. 3. SiZer map for n = 50.  

 

Conclusion 

The SiZer map is very useful technique in determining structure of the data. It can be treated 

as nonclassical method because of its multiple results. Taking into account not only one value 

of smoothing parameter like in classical approach but the range of values, broadens the 

researcher’s point of view. But the special issue should be underlined: the sample size. Too 

small sample size unables detailed analysis of structure of date. Further research should be 

made to determine the influence of the sample size on the results of SiZer map.  
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