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Estimation of claim counts quantiles 
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Abstract  

In this paper we analyze claim counts models applicable in many areas of non-life insurance practice, such as 

ratemaking, claims reserving or bonus-malus systems. The typical situation in portfolios of policies is the zero-

inflated and the overdispersion effects occurrence. That is why, in claim counts modelling the zero-inflated 

Poisson regression (ZIP) is usually used. ZIP model gives the possibility to analyze the influence regressors on 

the location of the conditional distribution of claim counts. The additional information how the risk factors 

affects the entire shape of distribution gives the estimation of quantiles of the claim counts distribution. To 

estimate quantiles, we apply the quantile regression technique and the asymmetric maximum likelihood. The 

goal of this paper is to present the possibility of implementation those models in insurance practice.  
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1. Introduction  

In many areas of non-life insurance practice, such as ratemaking, claims reserving or bonus-

malus systems, the important problem is to model the claim frequency distribution, where  

a regression component is included to take into account the individual characteristics of 

policyholders. A very common method chosen for modelling a claim frequency data is  

a GLM Poisson regression model, see [2]. However, in non-life insurance portfolios, the 

typical situation is the zero-inflated and the overdispersion effects occurrence. The reason of 

that, from one hand may be the disregarding some latent factors affecting the claims 

occurrence and from the other hand no report of small claims, what is not cost-effective 

because of the bonus-malus system. In this case GLM Poisson regression gives unsatisfied 

results and typically ZI-models are used. In actuarial literature there are few comparative 

studies of such models [14], where zero-inflated Poisson (ZIP), zero-inflated negative-

binomial (ZINB), zero-inflated generalized Poisson (ZIGP), zero-inflated double Poisson 

(ZIDP), hurdle and heterogeneous models are analyzed. Well known ZIP model proposed by 

Lambert is a mixture of a Poisson distribution and a zero point mass [6]. In case of the 
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overdispersion effect, the problem can by solved by assuming the negative-binomial 

distribution for count claims and the ZINB model is received. More efficient is to model 

count claims with generalized Poisson distribution, specially when the occurrence of claims is 

probably dependent, see in e.g. [4], [9].  

 All models mentioned above gives the possibility to analyze the influence regressors on the 

location of the conditional distribution of claim counts. The investigation how the risk factor 

affects the entire shape of distribution gives the additional information. These are all useful 

tools that take into account the asymmetry of claim counts like quantile regression technique 

(QR) or asymmetric maximum likelihood (AML). In this paper we analyze those two 

distribution-free approaches QR and AML, which can be treated as additional tool in claim 

counts modelling except ZI-models. The case study based on the real-world insurance 

portfolio examines the four-steps process modelling: (i) testing zero-inflation and 

overdispersion effects (ii) risk factors selection (iii) ZIP claim counts estimation (iv) quantiles 

of claim counts estimation.  

 The reminder of this paper is organized into three sections. In Section 2 a brief description 

of ZIP, AML and QR models for insurance data are presented as well as the method of 

model’s parameters estimation. Section 3 contains the case study based on the motorcycle 

insurance dataset taken from Ohlsson and Johansson [10]. For all calculation, the software  

R CRAN is applied. In order to execute the ML estimation, few packages are used: {pscl} 

package for ZIP/ZINB models, {quantreg} package for the QR model and {VGAM} package 

for AML.  

 

2. Claim counts modelling 

This section discusses two approaches in claim counts modelling. One is the generalized 

linear regression with the assumption of zero-inflated Poisson distribution (ZIP) and the other 

one is the distribution-free method of fitting regressions for the conditional percentiles of the 

response variable as the function of risk factors. Let consider the random variable iY , 

ni ,,1K=  denoting the number of claims with independent realizations in the portfolio of 

policies and mXX ,...,1  denoting categorical variables interpreted as risk factors influenced 

claim counts. In ratemaking analysis usually the multiplicative relationship is used [10], so we 

assumed the link function between claim counts and risk factors as logarithm: 

 βx ')log( ii =µ  (1) 
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where X is a )1( +m -dimentional design matrix for risk factors and ),...,( 1 mββ=β  is a vector 

of regression coefficients influence claim counts.  

 The first approach in claim counts modelling is well known ZIP model discussed e.g. in 

[12], [14]. In ZIP model the independent variables iY  take zero values with the probability iϖ  

or values from Poisson distribution )(~ ii PoisY λ  with probability iϖ−1 . Risk factors 

mXX ,...,1  simultaneously affect the number of claims and fractions of no claim policies iϖ . 

The link between claim counts and parameters iϖ  is assumed as logit: 

 ')
1

ln( i
i

i x=
−ϖ
ϖ

γ, (2) 

 

where γ ),...,( 1 mββ=  is a vector of regression coefficients influence iϖ .  

 The second approach we consider is claim counts modelling in which there is no 

assumption about the distribution of Y  and the asymmetry of data is taken into account. One 

method of such modelling was proposed by Efron [3], who introduced the variant of the 

maximum likelihood estimation called asymmetric maximum likelihood (AML), specially 

useful in generalized linear models with overdispersion effect. The other one, proposed by 

Machado and Silva [7] is to impose some data smoothness to transform discrete variables in 

continuous variables and apply the quantile regression. 

 Asymmetric maximum likelihood AML is the extension of asymmetric least squares 

regression. The idea of AML is based on minimize the asymmetric version of the deviance 

between any two members of the exponential family, depending on a positive constant 0>w , 

see in [3]: 
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 To find the AML estimator of vector β , the iterative method is applied to minimizing the 

expression: 
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where the function )(conditionΙ  takes the value 1 if the condition is true and 0 otherwise. For 

1=w  we receive the usual maximum likelihood estimate of β .  
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 In Machado and Silva concept [7], the quantil regression (QR) is used to estimate claim 

counts. They applied the jittering technique introduced by Stevens (1950), in which the 

discrete data are modified by adding a noise U  generated from a continuous distribution with 

support on [0,1]. According to Theorem 2 in Machado and Silva paper [7], there is one-to-one 

relationship between the conditional quantiles of variables Y  and UYZ += . After 

smoothing, the quantile regression QR is able to apply. QR of orderα , 10 << α , for claim 

counts is given by the formula: 

 βxx ')();( iiZTQ =αα , (5) 

 

where )();( iZTQ xαα  indicates conditional quantile of iY  for probability α  and );( αZT  

indicate some monotonic transformation of Z . The assumption about the differentiable 

sample objective function is now fulfill and the estimator αβ̂  is efficient – see Theorem 4. [7]. 

In QR for claim counts we assume the T -transformation )Zln()( =XβT , where Z is a vector 

of claim counts after the jittering process and the noise U  is drawn from a uniform 

distribution. In order to obtain more efficient estimator than αβ̂ , we perform the k - iterative 

procedure for kj ,...,1=  in following steps: 

(i) drawing the random sample iju , ni ,...,1=  of the noise UniformU ~   

(ii)  QR-estimation of jαβ̂  for the variable jUYZ +=  

(iii)  repeating (i)-(ii) m - times 

(iv) calculation the estimator 
k
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The 100α th quantile depends on parameter w  as follows: 
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 The drawbacks of AML regression is that 100α th quantiles cannot be computed for  

α  smaller than proportion of zero’s in the sample, in our application: proportion of no claims 

policies in portfolio. 
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3. The case study - motorcycle insurance dataset 

To present the claim counts modelling process with the zero – inflated and overdispersion 

occurrence, the case study based on the real-world dataset was analyzed. The dataset contains 

aggregate information about policies and claims from former Swedish insurance company 

WASA [10]. We analyzed 4 risk factors for every policy (the policyholder gender is omitted): 

driver’s age (from A (youngest) to G), the geographic zone (from A to G), MC class (from  

A to G) and vehicle’s age (from A (youngest) to C). The risk factor MC class is classified by 

the EV ratio, where 
75  kgin  weight vehicle

100kW x in capacity  engine

+
=EV  (75 kg is the average weight of  

a driver). Every risk factor can have an influence on the number of claims as well as on the 

occurrence of the zero – inflation and the overdispersion effect. There are 97,67% of no claim 

policies. 

 In the first step of process modelling the zero-inflation effect was tested using van der 

Broek score test as in [11]. Under the null hypothesis 0:0 =ϖH  and the assumption of 

Poisson distribution of claim counts, the score statistics is define as follows: 
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where y  is the average of the number of claims. The statistics )ˆ(βS  follows an asymptotic 

2χ  distribution with 1 degree of freedom. In analyzed dataset, the score statistics takes the 

value 79,31)ˆ( =βS  (p-value less than 0.0001), which means that null hypothesis should be 

reject and the zero-inflation effect occurs. It can therefore be concluded that in the portfolios 

there are mostly insurance policies without an accident. In ratemaking process this fact should 

be taking into consideration. 

 In second step of claim counts modelling, risk factors were selected under the assumption 

of zero-inflated Poisson distribution of claim counts. We applied following procedure in the 

selection process, see [8]:  

(i) estimating ZIP-model for every combination of risk factors,  

(ii)  selection of this subset of risk factors which gives the minimum value of the Akaike 

information criterion (AIC).  
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 In analyzing insurance portfolio the lower AIC.min = 7369.06 reaches the subset {veh.age, 

area}, where veh.age is a variable in count model and area is the variable in zero-inflated 

model.  

 In next step of modelling we applied free-distribution regressions: AML and QR for claim 

counts with {veh.age, area} regressors. We restricted the estimation to 3rd quartile in QR and 

the parameter 875.0=w  in AML regression. Table 1 presents estimates of the partial effects 

of the risk factors in three investigated models. All factors are statistically significant (p-value 

less than 0.0001), except area E and area G in QR model.  

  

 β̂  
Count 

Effect 

Std. 

Error 
wβ̂  

Count 

Effect 

Std. 

Error 
75.0

ˆ
=αβ  

Count 

Effect 

Std. 

Error 

veh.age A 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 

veh.age B -0.44 0.64 0.13 -0.44 0.64 0.13 -0.27 0.76 0.03 

veh.age C -1.05 0.35 0.11 -1.05 0.35 0.11 -0.33 0.72 0.02 

area A 0.00 1.00 - 0.00 1.00 - 0.00 1.00 - 

area B -0.39 0.68 0.11 -0.39 0.67 0.11 -0.15 0.86 0.02 

area C -0.76 0.47 0.12 -0.77 0.46 0.13 -0.20 0.82 0.02 

area D -0.94 0.39 0.11 -0.94 0.39 0.11 -0.38 0.68 0.02 

area E -1.68 0.19 0.35 -1.69 0.18 0.37 -0.04 0.96 0.03 

area F -1.44 0.24 0.25 -1.45 0.23 0.26 -0.17 0.84 0.03 

area G -2.05 0.13 1.01 -2.05 0.13 1.07 -0.04 0.96 0.09 

Table 1 Estimation results – ZIP, AML, QR. 

 

 The base variables are (veh.age.A, area A) with partial effects equal to one. The other 

partial effects show how each parameter impacts the number of claims in comparing to base 

variables. In our results, the estimated effects in ZIP and AML models are quite similar, so in 

this case for 875.0=w  this two models are equivalent. You can see, that all effects reduce the 

expected number of claims compared to base effects. Therefore, the least risky policies 

(generating the least expected number of claims) are: veh.age B and area B. The fraction of 

no claims policies is 79.0ˆ =ϖ  (p-value less than 0.0001). Generally the regressors around 

mean have a little impact on the shape of the conditional distribution than in comparing to 3rd 

quartile. 
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4. Conclusions 

The claim counts modelling process is the important part in the ratemaking process. That is 

why the researchers are still continuing and developing the technique of this type of 

modelling. In the paper, we presented that there is a possibility to analyze the regressors 

effects in different parts of claim counts distribution. The problem is how to compare the 

presented techniques of estimations. The good solution it seems to be taken as a goodness-of-

fit measure the cross-validation error, what will be considered in future researches. 
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