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Estimation of claim counts quantiles
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Abstract

In this paper we analyze claim counts models applein many areas of non-life insurance practceh as
ratemaking, claims reserving or bonus-malus systdins typical situation in portfolios of policies ihe zero-
inflated and the overdispersion effects occurrefidat is why, in claim counts modelling the zerélated
Poisson regression (ZIP) is usually used. ZIP mgdads the possibility to analyze the influenceresgors on
the location of the conditional distribution of ictacounts. The additional information how the rifgictors
affects the entire shape of distribution gives #éséimation of quantiles of the claim counts disitibn. To
estimate quantiles, we apply the quantile regresssehnique and the asymmetric maximum likelihoBle

goal of this paper is to present the possibilityngblementation those models in insurance practice.
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1 Introduction

In many areas of non-life insurance practice, saghatemaking, claims reserving or bonus-
malus systems, the important problem is to modeldiaim frequency distribution, where
a regression component is included to take intoowtc the individual characteristics of
policyholders. A very common method chosen for nliode a claim frequency data is
a GLM Poisson regression model, see [2]. Howeveman-life insurance portfolios, the
typical situation is the zero-inflated and the aligpersion effects occurrence. The reason of
that, from one hand may be the disregarding sonntlafactors affecting the claims
occurrence and from the other hand no report ofllsol@ms, what is not cost-effective
because of the bonus-malus system. In this case Balgson regression gives unsatisfied
results and typically ZI-models are used. In acalditerature there are few comparative
studies of such models [14], where zero-inflatedsstm (ZIP), zero-inflated negative-
binomial (ZINB), zero-inflated generalized Poiss@IGP), zero-inflated double Poisson
(ZIDP), hurdle and heterogeneous models are ardlyell known ZIP model proposed by

Lambert is a mixture of a Poisson distribution andero point mass [6]. In case of the
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overdispersion effect, the problem can by solved dsguming the negative-binomial

distribution for count claims and the ZINB modelreceived. More efficient is to model

count claims with generalized Poisson distributgpecially when the occurrence of claims is
probably dependent, see in e.g. [4], [9].

All models mentioned above gives the possibilityhalyze the influence regressors on the
location of the conditional distribution of clainounts. The investigation how the risk factor
affects the entire shape of distribution gives alditional information. These are all useful
tools that take into account the asymmetry of claounts like quantile regression technique
(QR) or asymmetric maximum likelihood (AML). In thipaper we analyze those two
distribution-free approaches QR and AML, which tentreated as additional tool in claim
counts modelling except ZI-models. The case studget on the real-world insurance
portfolio examines the four-steps process modellifg testing zero-inflation and
overdispersion effects (ii) risk factors select{@n ZIP claim counts estimation (iv) quantiles
of claim counts estimation.

The reminder of this paper is organized into thseetions. In Section 2 a brief description
of ZIP, AML and QR models for insurance data arespnted as well as the method of
model's parameters estimation. Section 3 contdieschse study based on the motorcycle
insurance dataset taken from Ohlsson and Johah$6gnFor all calculation, the software
R CRAN is applied. In order to execute the ML estiion, few packages are used: {pscl}
package for ZIP/ZINB models, {quantreg} packagetfoe QR model and {VGAM} package
for AML.

2. Claim counts modelling

This section discusses two approaches in claim tsommodelling. One is the generalized
linear regression with the assumption of zero-teflaPoisson distribution (ZIP) and the other
one is the distribution-free method of fitting regsions for the conditional percentiles of the
response variable as the function of risk factdmst consider the random variablé,
i=1...,n denoting the number of claims with independentizatons in the portfolio of
policies and X,,...,X,, denoting categorical variables interpreted as fédtors influenced
claim counts. In ratemaking analysis usually thdtiplicative relationship is used [10], so we
assumed the link function between claim countsrakdfactors as logarithm:

log(s4) = x;'B (1)
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whereX is a (m+1) -dimentional design matrix for risk factors afi¢- (5,,...,3,, is)a vector

of regression coefficients influence claim counts.
The first approach in claim counts modelling islivikmown ZIP model discussed e.g. in

[12], [14]. In ZIP model the independent variab¥dake zero values with the probability
or values from Poisson distributiol ~ Pois(4 ~ With probability 1-w,. Risk factors
X.... X, simultaneously affect the number of claims andtioas of no claim policiego, .
The link between claim counts and parametgrss assumed as logit:

w,
1-w

In( ) =X, (2)

wherey =(4,,....5,,) is a vector of regression coefficients influersze

The second approach we consider is claim countdeliimgy in which there is no
assumption about the distribution ¥f and the asymmetry of data is taken into accouné O
method of such modelling was proposed by Efron Y& introduced the variant of the
maximum likelihood estimation called asymmetric maxm likelihood (AML), specially
useful in generalized linear models with overdispar effect. The other one, proposed by
Machado and Silva [7] is to impose some data snmasth to transform discrete variables in
continuous variables and apply the quantile regpass

Asymmetric maximum likelihood AML is the extensiaf asymmetric least squares
regression. The idea of AML is based on minimize #symmetric version of the deviance
between any two members of the exponential farddypending on a positive constamt> 0,
see in [3]:

D(th, b)), th < i,

: 3
WD(f4, 1y ), 1y > [y ©

D, (#4, 15) ={

To find the AML estimator of vectop , the iterative method is applied to minimizing the

expression:

ﬁW = mpinZ[ini 'B- eP - In(yi )]Wl(VPexi"‘) ’ @)

where the functionl takes the value 1 if the condition is true andtl®eowise. For

(condition)

w=1 we receive the usual maximum likelihood estimdt@ o
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In Machado and Silva concept [7], the quantil esgion (QR) is used to estimate claim
counts. They applied the jittering technique intrceld by Stevens (1950), in which the
discrete data are modified by adding a ndisgenerated from a continuous distribution with
support on [0,1]. According to Theorem 2 in Machadd Silva paper [7], there is one-to-one
relationship between the conditional quantiles @friables Y and Z=Y +U. After
smoothing, the quantile regression QR is able fya@R of orderr, 0<a <1, for claim

counts is given by the formula:

Qr iz (alxi) =X'B, (5)

where QT(Z;O,)(a|xi) indicates conditional quantile oY, for probability a and T(Z;a)
indicate some monotonic transformation @f. The assumption about the differentiable
sample objective function is now fulfill and thdiesator ﬁa Is efficient — see Theorem 4. [7].
In QR for claim counts we assume thetransformationT (XB) =In( Z) whereZ is a vector
of claim counts after the jittering process and ti@se U is drawn from a uniform
distribution. In order to obtain more efficient iestor thanﬁa, we perform thek - iterative
procedure forj =1,...,k in following steps:

()  drawing the random sampig, i =1,...,n of the noiseJ ~Uniform
(i)  QR-estimation oﬁm. for the variableZ =Y +U

(i) repeating (i)-(i))m- times
B.
k

The 10Qx th quantile depends on parameteras follows:

1 n
a :ﬁz et )
1

(iv) calculation the estimatds, ==

The drawbacks of AML regression is that DO quantiles cannot be computed for
a smaller than proportion of zero’s in the sampheour application: proportion of no claims

policies in portfolio.
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3.  Thecasestudy - motorcycle insurance dataset

To present the claim counts modelling process with zero — inflated and overdispersion
occurrence, the case study based on the real-watéset was analyzed. The dataset contains
aggregate information about policies and claimsnfi@rmer Swedish insurance company
WASA [10]. We analyzed 4 risk factors for everyipgl(the policyholder gender is omitted):
driver’'s age (from A (youngest) to G), the geogiamone (from A to G), MC class (from

A to G) and vehicle’s age (from A (youngest) to The risk factor MC class is classified by

enginecapacityin kw x100
vehicleweightin kg+ 75

the EV ratio, whereEV = (75 kg is the average weight of

a driver). Every risk factor can have an influelcethe number of claims as well as on the
occurrence of the zero — inflation and the ovemlision effect. There are 97,67% of no claim
policies.

In the first step of process modelling the zeritation effect was tested using van der

Broek score test as in [11]. Under the null hypsihed,:w = 0 and the assumption of

Poisson distribution of claim counts, the scoréistias is define as follows:

n 1 )
. (i (6)
S(B) =~ ,
(Zg =) -ny

where y is the average of the number of claims. The $ikzsﬁi§(,@) follows an asymptotic
x? distribution with 1 degree of freedom. In analyzataset, the score statistics takes the

value S(,@) = 3179 (p-value less than 0.0001), which means that imgplothesis should be

reject and the zero-inflation effect occurs. It ¢harefore be concluded that in the portfolios
there are mostly insurance policies without ande. In ratemaking process this fact should
be taking into consideration.

In second step of claim counts modelling, riskdex were selected under the assumption
of zero-inflated Poisson distribution of claim cesinWe applied following procedure in the
selection process, see [8]:

(i) estimating ZIP-model for every combination of rfaktors,
(i)  selection of this subset of risk factors which githe minimum value of the Akaike

information criterion (AIC).
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In analyzing insurance portfolio the lower AIC.n%#r7369.06 reaches the subseth{age,
area}, where veh.age is a variable in count model ardea is the variable in zero-inflated
model.

In next step of modelling we applied free-disttibo regressions: AML and QR for claim
counts with {reh.age, area} regressors. We restricted the estimationfog8artile in QR and
the parametew = 0875 in AML regression. Table 1 presents estimatedhefgartial effects
of the risk factors in three investigated modell féctors are statistically significant (p-value
less than 0.0001), exceqtea E andarea G in QR model.

- Count Std. - Count Std. N Count Std.
Effect Error " Effect Error  © > Effect Error
veh.age A 0.00 1.00 - 0.00 1.00 - 0.00 1.00 -

veh.ageB -0.44 0.64 0.13 -0.44 0.64 0.13 -0.27 60.70.03

veh.ageC -1.05 0.35 0.11 -1.05 035 0.11 -0.33 20.70.02
area A 0.00 1.00 - 0.00 1.00 - 0.00 1.00 -
area B -0.39 0.68 0.11 -0.39 0.67 011 -0.15 0.86.020
area C -0.76  0.47 0.12 -0.77 0.46 0.13 -0.20 0.82.020
area D -0.94 0.39 011 -094 0.39 0.11 -0.38 0.68.020
area E -1.68 0.19 035 -1.69 0.18 037 -0.04 0.96.030
area F -1.44  0.24 0.25 -145 0.23 0.26 -0.17 0.84.030
area G -2.05 0.13 1.01 -205 0.13 1.07 -004 0.96.090

Table 1 Estimation results — ZIP, AML, QR.

The base variables argelf.age.A, area A) with partial effects equal to one. The other
partial effects show how each parameter impactsitimber of claims in comparing to base
variables. In our results, the estimated effecZlihand AML models are quite similar, so in
this case foow= 0875%his two models are equivalent. You can see,ah&ffects reduce the
expected number of claims compared to base effddterefore, the least risky policies
(generating the least expected number of claimes)vah.age B andarea B. The fraction of
no claims policies igo = 0.79p-value less than 0.0001). Generally the regresamound
mean have a little impact on the shape of the ¢immail distribution than in comparing t&'3
guartile.
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4.  Conclusions

The claim counts modelling process is the imporgart in the ratemaking process. That is
why the researchers are still continuing and deuefp the technique of this type of
modelling. In the paper, we presented that thera mossibility to analyze the regressors
effects in different parts of claim counts disttion. The problem is how to compare the
presented techniques of estimations. The goodispliitseems to be taken as a goodness-of-

fit measure the cross-validation error, what wdldonsidered in future researches.
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