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On the particular construction of the SMC sampling method  
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Abstract 

We consider the theoretical problem of time series which arises when the distribution of the observed variable is 

the de facto conditional distribution. The Kalman filter provides an effective solution to the linear Gaussian 

filtering problem. However, when state/measurement functions are highly non-linear, and posterior probability 

distribution of the state is non-Gaussian, the optimal linear filter and its modifications do not provide satisfactory 

results. We propose the Sequential Monte Carlo method, known generically as particle filter, which combines 

importance sampling and resampling schemes. In particular, we present a construction of an auxiliary particle 

filter algorithm using the Pearson curves technique for approximation of importance weights of simulated 

particles. The effectiveness of the method is discussed and illustrated by numerical results based on the 

simulated stochastic volatility process SV.  
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1. Introduction  

The article concerns the nonlinear filtering problems which appear in many diverse fields 

including economics, statistical signal and numerous processing engineering problems. In the 

following research, we consider a discrete state space representation models DSSM 

(sometimes termed as ‘hidden Markov models’, HMM) and show how the Sequential Monte 

Carlo (SMC) methods can be used to approximate the filtering and predictive distribution 

functions. A DSSM consists of a stochastic propagation equation, which links the current 

state vector to the prior state vector, and a stochastic observation equation, which links the 

observation data to the current state vector.  

 Let us consider a probability space ),,( PΣΩ  on which we define the following model. For 

any parameter Θ∈θ , the hidden (latent) state process }1:{ ≥tX t  is a stationary and ergodic 

Markov process, characterized by its Markov transition probability distribution )'( xxp  
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 ),(~),,( 11:11:11:11:1 θθ −−−−− == ttttttt xxpyYxXX , (1) 

 

and a known, invariant initial probability density of state )(~ 11 θxpX . As indicated by its 

name, }{ tX  is observed not directly but through another process },...,1:{ TtYt = . The 

observations are assumed to be conditionally independent when given }{ tX , and their 

common marginal probability distribution is expressed as follows 

 ),(~),,,,( :1:1:1:11:11:1 θθ ttTTTtTtttttt xypyYxXxXxXY ==== ++−− . (2) 

 

 Depending on context, p  will denote a probability distribution or a probability density 

function. In addition, for any process }{ tZ  the realizations from time it =  to jt =  will be 

denoted as ),...,,( 1: jiiji zzzz += . We assume that the static parameter θ  is known, then 

sequential inference on the latent process }{ tX  is typically based on the sequence of posterior 

distributions ),( :1:1 θtt yxp , which each summarizes all the information collected about tX :1  up 

to time t . In a Bayesian context, sequential estimation of these distributions can be easily 

achieved using the following updating formula, for 2≥t   
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 In relevant literature, the optimal filtering problem is defined by the recursion satisfied by 

the marginal distribution )( :1tt yxp , then we have an equation known as the updating step  
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and the prediction step 

 11:1111:1 ),(),(),( −−−−− ∫= ttttttt dxyxpxxpyxp θθθ . (5) 

 

 However simple it may be, the recursion formula in equation (4) rarely admits a closed 

form expression (notably the linear-Gaussian case, which leads to the Kalman filter). In 

general, it is necessary to employ approximations. In this paper, we consider the application 

of the Sequential Monte Carlo (SMC) methods, particularly particle filter (PF). Since their 
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introduction by Gordon, Salmond and Smith in 1993, particle filtering methods have become 

a very popular class of algorithms to solve these estimation problems numerically in an online 

manner. Our attention is focused on an algorithm known as the auxiliary particle filter (APF).  

 

2. Methodology - the idea of particle filter and auxiliary particle filter 

The basic variants of PF are the extended version of the Sequential Importance Sampling 

(SIS) algorithm with an added resampling step (known as the Sequential Importance 

Resampling, SIR). Resampling is necessary to keep as many samples as possible with non-

zero weights. The idea behind it is to reduce the degeneracy problem and increase speeds of 

PF, for details see [2], [5], [8]. Through PF in particular, one obtains the Monte Carlo 

approximation of the filtering distribution, which is an empirical distribution formed from 

a set of random samples (known as particles) with associated weights 

 ∑
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tt

i
tttN xxwyxp
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)(
:1:1 )()(ˆ δ , (6) 

 

where )(⋅δ  is the Dirac delta function, and )(i
tw  denotes the normalized importance weight 

attached to particle )(i
tx , details can be found in [1], [3], [5], [6]. The importance weight is 

calculated from the formula: 
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where )(⋅q  is the importance sampling function.  

 The choice of an importance density is one of the critical elements of the method that 

affects its efficiency. Note that depending on the form of the importance density function 

)(⋅q , in literature we can distinguish two versions: the first denoted in formula (7), where “1” 

is known as a prior kernel, and the second “2” is the optimal importance density 2. It is worth 

noting that on the one hand, the optimal importance function limits the degeneracy algorithm, 

                                                 
2 By optimal we understand such a function which minimizes the variance of the importance weights conditional 

upon the simulated trajectory )(
1:1

i
tx −  and observations ty :1 , i.e. 0][var )(
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inasmuch as it takes into account the information about the current observation. But on the 

other, it suffers from two major drawbacks: it requires the ability to sample from 

),( )(
1 t

i
tt yxxp −  and to evaluate up to )( )(

1
i

tt xyp − , which in general does not occur in analytical 

form.  

 Literature features various methods of PF optimization which mainly consist in applying 

selected suboptimal function approximation methods, see for example [3], [6], or some 

modifications of the resampling procedure [2], [8], [9] and the references therein. 

 In this paper, we present a new idea for the construction of APF, which for a suitable 

weighing of simulated particles involves the use of Pearson curves (PC) for an approximation 

of )( )(
1

i
tt xyp − . The idea of APF algorithm is strongly associated with the fact that when we use 

the optimal importance function, the weight at time t  does not depend on the state tx . 

Therefore, it seems wasteful to resample particles at the end of iteration 1−t  prior to looking 

at ty , so it is proposed to employ knowledge about the next observation before resampling to 

ensure that particles are compatible with that observation. APF was first described by Pitt and 

Shephard [10], Carpenter, Clifford and Fearnhead [4]. Despite the above dissimilarity (7), it 

can be shown that the APF proposed in [4] may be interpreted as SIR with a different choice 

of importance weights. Having selected the appropriate importance function ),( 1 ttt yxxq −  and 

resampling strategy the considered APF algorithm can be summarised as the following 

pseudo code: 

APF algorithm 
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 It is worth noting that by employing the above algorithm, we can obtain the approximation 

)(ˆ)()(ˆ 1:1:11:1:1 tttttt xypyxpyxp ++ ∝ . However, )( :1:1 tt yxp  is not approximated directly and the 

importance sampling is proposed  

 ,),()(~)(ˆ)(ˆ 111:1:11:11:1 +++++ ∝ ttttttttt yxxqxypyxpyxp . (8) 

 

where )(~
1 tt xyp +  is the approximation of function )( 1 tt xyp + .  

 

3. Simulations and results 

The performance of the method under discussion is demonstrated through a simulated 

standard stochastic volatility model SV with uncorrelated measurement. We assume that ty  is 

the observed return, tx  the unobserved log-volatility. In terms of proceeding sequentially, we 

identify latent variables and observations by conditional distributions 
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where φ  is the persistence of volatility process that allows for volatility clustering, α  is 

interpreted as the modal volatility, 2σ  is the volatility of the volatility factor, and 

],,[ 2σφαθ =  is the parameter vector. 

 In this paper, our main goal is to discuss the possibility of improving the PF method by 

applying PC technique for approximation of functions )( 1−tt xyp . Pearson Curve can be 

obtained as functions of the shape parameters: skewness 
2
2

2
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1 µ
µβ =  and kurtosis 
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4
2 µ

µβ = , 

(which are tabulated), where kµ  is a k th central moment ,)))((( 11 −−−= t
k

tttk xxyEyEµ  

4,3,2=k . We can compute the explicit form of the mentioned moments: 
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 [ ] )5.0exp( 2
112 σφαµ ++== −− ttt xxyVar , (12) 

 

 03 =µ , (13) 

 

 [ ] )2exp()22exp( 2
11

4
4 σφαµ −− +== ttt xxyE . (14) 

 

 Accordingly, we can conclude that )( 1−tt xyp  is a symmetric function, described by 

kurtosis )exp( 2
2 σβ =  which depends on 2σ . It can be easily checked that the function under 

consideration takes the form of Pearson type II curve (if 32 >β ), type VII (for 32 <β ) or 

Gaussian curve (if 32 =β ). A thorough theoretical analysis of APF for its effectiveness 

shows that we should select a function )(~
1−tt xyp  with thicker tails than )( 1−tt xyp  (so that 

the importance weighs should be upper bounded). Therefore, we assume that )(~
1−tt xyp  is 

a Pearson type VII distribution with shape parameter m  and scale parameter a , defined by 

the density  
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a , )( ⋅Γ  is the gamma function. Additionally, due to the fact 

that the observations can take both a positive and negative value, it is necessary to extend the 

function (15) for the negative axis. Assuming that they appear equally often, we consider 

a combination of PC VII defined on the whole of the real line  
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where the parameters ),( −− ma , ),( ++ ma  are determined separately for sets: ttt yy }0:{ <−  

and }0:{ >tt yy . 

 In order to investigate the performance of the proposed algorithm we evaluate its 

effectiveness by the Root Mean Squared Error (RMSE) defined as:  
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which measures the distance between the true tx  and filtered series tx̂ , where 
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 In presented research, we assume that parameters α , φ  are constant, particularly 3,0=α , 

8,0=φ , while manipulating the level of the σ  (most filters are sensitive to the size of the 

disturbance which is exposed to hidden variable). For this we will respectively denote models 

M1, M2, M3 for 5,0=σ , 1=σ , 2=σ . Additionally, we compare the use of proposed APF 

strategies (APF_PC) with the well known SIR filter, the APF proposed in [9] (APF_P). 

Simulation results for the proposed technique are presented on the assumption that the 

sampling distribution q  is a Gaussian approximation of p as described in [3]. 

 

   

 

 

 

  

Fig. 1. Plot of RMSE for SIR and APF technique (from left to right M1, M2, M3).  

 

 Fig. 1 shows the RMSE values that are computed using simulated time series with length 

1000=T  and two different numbers of particles 1000=N  (the first row in the above frame), 

10000=N  (second row). The presented results show that the proposed technique, regardless 

of the model, outperforms the conventional particle filter.  
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4. Conclusions 

Various techniques have been suggested to improve filtering algorithms for nonlinear models. 

In this paper, we have introduced APF algorithm combined with Pearson curves technique. 

We have demonstrated that it is possible to develop APF approximation which performs well 

for nonlinear, non-Gaussian series observations, which are fairly common in financial time 

series. Additionally, our modification, outlined above, makes APF straightforward and quick 

to implement. A more extensive analysis of the problem will be presented in the extended 

version of this article. 
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