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Abstract

We consider the theoretical problem of time senbgh arises when the distribution of the observadable is
the de facto conditional distribution. The Kalmaltef provides an effective solution to the lindgaaussian
filtering problem. However, when state/measurenienttions are highly non-linear, and posterior poibity

distribution of the state is non-Gaussian, themaitilinear filter and its modifications do not pide satisfactory
results. We propose the Sequential Monte Carlo oatktknown generically as particle filter, which doimes
importance sampling and resampling schemes. Incpkat, we present a construction of amxiliary particle
filter algorithm using the Pearson curves technife approximation of importance weights of simatht
particles. The effectiveness of the method is dised and illustrated by numerical results basedhen

simulated stochastic volatility process SV.
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1. Introduction

The article concerns the nonlinear filtering probdewhich appear in many diverse fields
including economics, statistical signal and numerprocessing engineering problems. In the
following research, we consider a discrete statacsprepresentation models DSSM
(sometimes termed as ‘hidden Markov models’, HMM{l ahow how the Sequential Monte
Carlo (SMC) methods can be used to approximatdfilieeing and predictive distribution
functions. A DSSM consists of a stochastic propagaequation, which links the current
state vector to the prior state vector, and a ststoh observation equation, which links the
observation data to the current state vector.

Let us consider a probability spa¢®,, P) on which we define the following model. For

any parametef [J ©, the hidden (latent) state procdss, :t> idJa stationary and ergodic

Markov process, characterized by its Markov tramsiprobability distributionp(x'|x)
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Xt|(xn—1 = Xpgr Yy = Y1, 0) = p(Xt|Xt_l,9), (1)

and a known, invariant initial probability densiby stateX, ~ p (x1|6?). As indicated by its
name, { X, } is observed not directly but through another psecgY,:t=1...T}. The
observations are assumed to be conditionally imdget when given{ X, ,} and their
common marginal probability distribution is expregss follows

Yt‘(xlT—l = X0 Xy = %0 Xigr = Xogr Yir = Yoy n0) ~ p(yt|xt’9)' (2)

Depending on contextp will denote a probability distribution or a prohigy density
function. In addition, for any proceg§¥, the realizations from timé=i to t=j will be
denoted asz.; =(z,z.,,..-.Z;) .- We assume that the static parameferis known, then
sequential inference on the latent proceXs is typically based on the sequence of posterior
distributions p(xm|ylt,€) , which each summarizes all the information cotdcaboutX,, up

to time t. In a Bayesian context, sequential estimationhese¢ distributions can be easily
achieved using the following updating formula, fax 2

P(Y,[X,. 6) P(X,|% ., 6)
POV |Yuar6)

p(xl't|yl't ,0) = p(X11—1|y11—1' 6) 3)

In relevant literature, the optimal filtering pteln is defined by the recursion satisfied by

the marginal distributiorp(xt|yh), then we have an equation known asupeéating step

P(Y:|X,, 8) P(X,|Yis-1.6)
JCAY)

P(X Y, 6) = 4)
and the prediction step

PO Yae1:0) = [ PO %10 6) P4 Vir1, )X . (5)

However simple it may be, the recursion formulaequation (4) rarely admits a closed
form expression (notably the linear-Gaussian cadech leads to the Kalman filter). In
general, it is necessary to employ approximatidmshis paper, we consider the application
of the Sequential Monte Carlo (SMC) methods, paldidy particle filter (PF). Since their
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introduction by Gordon, Salmond and Smith in 198&ticle filtering methods have become
a very popular class of algorithms to solve theseration problems numerically in an online

manner. Our attention is focused on an algorithowknas the auxiliary particle filter (APF).

2.  Methodology - theidea of particlefilter and auxiliary particlefilter

The basic variants of PF are the extended versiaheo Sequential Importance Sampling
(SIS) algorithm with an added resampling step (kmoas the Sequential Importance
Resampling, SIR). Resampling is necessary to keemany samples as possible with non-
zero weights. The idea behind it is to reduce thgederacy problem and increase speeds of
PF, for details see [2], [5], [8]. Through PF inrtpaular, one obtains the Monte Carlo
approximation of the filtering distribution, whids an empirical distribution formed from

a set of random samples (known as particles) vetiociated weights

N . .
Py (X1t|Yn) :z Wt(l)a_(xlt - Xl(lt)) , (6)
i=1

where J()) is the Dirac delta function, and’ denotes the normalized importance weight

attached to particlex”” , details can be found in [1], [3], [5], [6]. Theportance weight is

calculated from the formula:
(i)
\Nt(i) =Wt(i)(xft)) 0 p(xj(_-it)|Y1t)
q04? | Vi)

i i i ! i 7
- WO p(y[x?) dla a(x X vi) = pOx XY @

) ) ) 2 )
WO p(yx5) dla q(x|xy, vi) = px x5 o)

whereq () is the importance sampling function.

The choice of an importance density is one of dhigical elements of the method that
affects its efficiency. Note that depending on foem of the importance density function
q(D , in literature we can distinguish two versions thist denoted in formula (7), where “1”
is known as a prior kernel, and the second “2his aptimal importance densitylt is worth
noting that on the one hand, the optimal importdnoetion limits the degeneracy algorithm,

2 By optimal we understand such a function whichimires the variance of the importance weights citl

upon the simulated trajector),((ﬂ)_l and observationy/,, , i.e. Varq(Xt‘x(i) , )[Wt(i)] =0.
1t-10 Y1t
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inasmuch ast takes into account theformation about the current observation. But be t
other, it suffers from two major drawbacks: it reqe the ability to sample from

p(xt‘xfi_)l,yt) and to evaluate up t«p(yt‘xfi_’l), which in general does not occur in analytical

form.

Literature features various methods of PF optiterawhich mainly consist in applying
selected suboptimal function approximation methaske for example [3], [6], or some
modifications of the resampling procedure [2], [8], and the references therein.

In this paper, we present a new idea for the coasbn of APF, which for a suitable
weighing of simulated particles involves the uséearson curves (PC) for approximation

of p(yt‘xt(i_)l) . The idea of APF algorithm is strongly associatétth the fact that when we use

the optimal importance function, the weight at tirnedoes not depend on the state

Therefore, it seems wasteful to resample partiatdbe end of iteration—1 prior to looking
at y,, so it is proposed to employ knowledge about # nbservation before resampling to

ensure that particles are compatible with that olad®n. APF was first described by Pitt and
Shephard [10], Carpenter, Clifford and Fearnhedd[}&spite the above dissimilarity (7), it
can be shown that the APF proposed in [4] may tepreted as SIR with a different choice

of importance weights. Having selected the appad@rimportance functioq(xt|x[_1, y,) and

resampling strategy the considered APF algorithm ba summarised as the following
pseudo code:
APF algorithm

p(y, ") p(d”)

1. Att=1fori=1..,N dosamplex” ~q(y,) setw!’ O )
(%

end for

2. Fort=2,fori=1...,N do
set ), 0 W B(%[x%), RESAMPLEX, W1} ~ (%}, setxi, = %, end for

fori=1...,.N do

p(y, ") P [x%)
a0 X2, v ) By X

samplex" ~ q(x, ‘xf‘_)l,yt) , setw” [ , end for.
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It is worth noting that by employintpe above algorithm, we can obtain the approximatio

P(Xy | Yirar) O p(xm‘ym) ﬁ(yt+1|>q). However, p(xﬂ|ym) is not approximated directly and the

importance sampling is proposed

P(Xygaa| Yirer) O PO Y ) PYea X ) AKX s Vi) - (8)

where p(y,,,|%) is the approximation of functionp(yt+l|xt) :

3. Simulations and results
The performance of the method under discussionemothstrated through a simulated

standard stochastic volatility model SV with uneteited measurement. We assume thais
the observed return, the unobserved log-volatility. In terms of proceedsequentially, we

identify latent variables and observations by cbadal distributions

1 _ X ma-e)’
P(%[%,6) = o exr{ 207 ] 9)
I S e (s
p(yt|x‘)‘mex’{ z(exmxa”‘ﬂ' 4o

where ¢ is the persistence of volatility process that afofor volatility clustering,a is
interpreted as the modal volatilityg® is the volatility of the volatility factor, and
6 =[a,p 07] is the parameter vector.

In this paper, our main goal is to discuss thesini#y of improving the PF method by

applying PC technique for approximation of funcﬂ'op(yt|xt_l). Pearson Curve can be

2
obtained as functions of the shape parameters: redss\s, =/J—‘°; and kurtosisf, :'u—‘;,
2 2

(which are tabulated), wherg, is akth central momenty, = E((Y, —E(yt‘xt_l))k|xt_1),

k = 234. We can compute the explicit form of the mentionezments:

+ +
E[yt|xt—1] = E{exp(a 40(21 T gtj

XI—1:| =0, (11)
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1, =Varly,|x | = exp@ + g, + 0507), (12)
Hy =0, (13)
1, = Elyix.] =expea + 20 expRo?). (14)

Accordingly, we can conclude thap(yt|xt_l) is a symmetric function, described by
kurtosis B, = exp(?) which depends o@?. It can be easily checked that the function under
consideration takes the form of Pearson type IWeuWif S, >3), type VIl (for B, <3) or
Gaussian curve (if3, =3). A thorough theoretical analysis of APF for itSeetiveness
shows that we should select a functiﬁ(lyt|>q_1) with thicker tails thanp(yt|xt_1) (so that
the importance weighs should be upper bounded)teftre, we assume thaﬁ(yt|xt_1) IS

a Pearson type VII distribution with shape parameteand scale parameter, defined by

the density

VI _ 2I_(m) y_2 o
fam (y)_ a\/;r(m_%)(l-'- azj I[O,w)(y)' (15)

where m= 55, _9, a= 24, , T'([) is the gamma function. Additionally, due to thetfa
23,-6 \ B,-3

that the observations can take both a positivereggtive value, it is necessary to extend the
function (15) for the negative axis. Assuming thia¢y appear equally often, we consider
a combination of PC VII defined on the whole of tkal line

fom e ) =2 (fe " O o)+ ™ oy ) (16)

2
where the parameter@_,m.), (a,,m,) are determined separately for setsy, :y, <0},
and{y, :y, > 0}.

In order to investigate the performance of theppsed algorithm we evaluate its
effectiveness by the Root Mean Squared Error (RMfgfiped as:
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k=1

RMSHt] = (t‘li(xk - ik)zj , (17)

which measures the distance between the trye and filtered seriesX,, where

N . .
% = Elx |yl = 2 w"x?.
i=1
In presented research, we assume that parametegsare constant, particularly = 0,3,

¢ = 0,8, while manipulating the level of the (most filters are sensitive to the size of the
disturbance which is exposed to hidden variable).tkis we will respectively denote models
M1, M2, M3 for o = 05, 0 =1,0 = 2. Additionally, we compare the use of proposed APF
strategies (APF_PC) with the well known SIR filtéhe APF proposed in [9] (APF_P).
Simulation results for the proposed technique amsented on the assumption that the

sampling distributiong is a Gaussian approximation pfas described in [3].

100 " 200 300 " 400 “sbo " 600 760 8o 960 1000 100 "200 " 300 " 460 " sbo “6bo 700 80 ~9bo 1000

APF PC ----- APF P — — KPF

—— APF PC ----- APF P — — KPF [ APF PC ----- APF P — — KDF

100 " 200 300 400 300 sbo 700 00 900 10bo
—— APF PC ----- APF P — — KPF [—=aPF Pc--—-- aPF P — —xPF
APF PC ----- APF P — — KPF

Fig. 1. Plot of RMSE for SIR and APF technique (from leftright M1, M2, M3).

Fig. 1 shows the RMSE values that are computeggusimulated time series with length
T =1000 and two different numbers of particlés=  10Q@Be first row in the above frame),
N =10000 (second row). The presented results show thapithyeosed techniqueegardless

of the model, outperforms the conventional partiitter.
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4.

Conclusions

Various techniques have been suggested to imprbeeng algorithms for nonlinear models.

In this paper, we have introduced APF algorithm bimed with Pearson curves technique.

We have demonstrated that it is possible to deval®p approximation which performs well

for nonlinear, non-Gaussian series observationschwére fairly common in financial time

series. Additionally, our modification, outlinedai®, makes APF straightforward and quick

to implement. A more extensive analysis of the fmwbwill be presented in the extended

version of this article.
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